精英家教网 > 高中数学 > 题目详情

在极坐标系中,已知点P为圆ρ2+2ρsinθ﹣7=0上任一点.求点P到直线ρcosθ+ρsinθ﹣7=0的距离的最小值与最大值.

dmin=,dmax=

解析试题分析:由题意圆的普通方程为 x2+y2+2y﹣7=0,参数方程为 (α为参数),直线的极坐标方程为ρcosθ+ρsinθ﹣7=0.将圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值即可.
圆ρ2+2ρsinθ﹣7=0的普通方程为 x2+y2+2y﹣7=0,…(2分)
直线ρcosθ+ρsinθ﹣7=0的普通方程为x+y﹣7=0,…(4分)
设点P(2cosα,2sinα﹣1),
则点P到直线x+y﹣7=0的距离
d==…(8分)
所以dmin=
dmax=.…(10分)
考点:点的极坐标和直角坐标的互化;直线与圆的位置关系
点评:此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线C的参数方程为为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点,直线的极坐标方程为.
(1)判断点与直线的位置关系,说明理由;
(2)设直线与曲线C的两个交点为A、B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线过点P(-2,-4)的直线为参数)与曲线C相交于点M,N两点.
(Ⅰ)求曲线C和直线的普通方程;
(Ⅱ)若|PM|,|MN|,|PN |成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,曲线C1的参数方程为为参数)曲线C2的参数方程为为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=与C1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当=时,l与C1,C2的交点分别为A1,B1,当=-时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把下列方程化为直角坐标方程(并说明对应的曲线):
                   ②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,曲线为参数)。在以为原点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,射线为,与的交点为,与除极点外的一个交点为。当时,
(1)求的直角坐标方程;
(2)设轴正半轴交点为,当时,设直线与曲线的另一个交点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系下,设圆C:,试求:
(1)圆心的直角坐标表示
(2)在直角坐标系中,设曲线C经过变换得到曲线,则曲线的轨迹是什么图形?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。
(1)写出直线与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 在直角坐标系中,以极点,轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为分别为轴,轴的交点
(1)写出的直角坐标方程,并求出的极坐标
(2)设的中点为,求直线的极坐标方程

查看答案和解析>>

同步练习册答案