精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的图象关于点(-1,0)对称,且当x∈(0,+∞)时,f(x)=
1
x
,则当x∈(-∞,-2)时f(x)的解析式为(  )
A、-
1
x
B、
1
x+2
C、-
1
x+2
D、
1
2-x
分析:x∈(-∞,-2)时,在f(x)的图象上任取一点A(x,y),求出A关于点(-1,0)的对称点B的坐标,
把点B的坐标代入f(x)=
1
x
化简可得所求的解析式.
解答:解:当x∈(-∞,-2)时,在f(x)的图象上任取一点A(x,y) 则A关于点(-1,0)的对称点B(-2-x,-y)在
f(x)=
1
x
上,∴-y=
1
-2-x
,即  y=
1
x+2

故选 B.
点评:本题考查求一个点关于另一个点的对称点的坐标的方法,两曲线关于某个点对称时,一个曲线上的任一点关于此点的对称点在另一条曲线上.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案