精英家教网 > 高中数学 > 题目详情
11.已知偶函数f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间[0,2]上是递增的,则f(-6.5),f(-1),f(0)的大小关系是(  )
A.f(0)<f(-6.5)<f(-1)B.f(-6.5)<f(0)<f(-1)C.f(-1)<f(-6.5)<f(0)D.f(-1)<f(0)<f(-6.5)

分析 根据函数单调性和周期性的性质进行比较即可.

解答 解:由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x),
则函数的周期是2,
∵函数f(x)为偶函数,
∴f(-6.5)=f(-0.5)=f(0.5),
f(-1)=f(1),
∵f(x)在区间[0,2]上是递增的,
∴f(0)<f(0.5)<f(1),
即f(0)<f(-6.5)<f(-1),
故选:A

点评 本题主要考查函数值的大小比较,根据条件判断函数的周期性,利用函数的奇偶性和单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.计算:
(1)$\frac{lg2+lg5-lg8}{lg50-lg40}$;
(2)log3$\frac{\root{4}{27}}{3}$log5[${4}^{\frac{1}{2}{log}_{2}10}$-(${\sqrt{3}}^{3}$)${\;}^{\frac{2}{3}}$-7log72].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点M(3,2)的抛物线方程是(  )
A.x2=$\frac{9}{2}$yB.y2=$\frac{4}{3}$xC.y2=$\frac{4}{3}$x或 x2=$\frac{9}{2}$yD.y2=$\frac{3}{4}$x或x2=$\frac{2}{9}$y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知F1(-2,0),F2(2.0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.
(1)求轨迹E的方程;
(2)点M,N是曲线E上的两个动点,且以线段MN为直径的圆恒经过点Q(-1.0),求证:直线MN过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知A={y|y=x2-2x-1,x∈R},B={x|-2≤x<8},则集合A与B的关系是B⊆A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{{2x}^{2}-x+1}{{x}^{2}}$,x∈[1,4]的值域为[$\frac{7}{4}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在等差数列{an}中,a20=18,d=-3,求a10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知0<α<π,sinα+cosα=-$\frac{7}{13}$,则$\frac{sinαcosα}{\sqrt{2}sin(α-\frac{π}{4})}$的值为(  )
A.-$\frac{60}{221}$B.-$\frac{120}{221}$C.-$\frac{60}{17}$D.$\frac{60}{221}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的值域:
(1)-x2-4x+3;
(2)y=$\frac{1}{2+x+{x}^{2}}$;
(3)y=x-$\sqrt{x+2}$.

查看答案和解析>>

同步练习册答案