精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,ABCD是平行四边形,M,N,Q分别PB,PC,AB的中点.
求证:(1)MN∥平面PAD;
(2)QN∥平面PAD.

证明:(1)∵M、N分别是PB、PC的中点,
∴MN∥BC,(2分)

又∵AD∥BC,∴MN∥AD,(4分)
又∵AD?平面PAD,
∴MN∥平面PAD;(6分)
(2)连接MQ,如下图所示:

∵M、Q分别是PB、AB的中点,
∴MQ∥PA,(8分)
又∵MN∩MQ=M,
∴平面MNQ∥平面PAD,(10分)
又∵QN?平面MNQ,
∴QN∥平面PAD;(12分)
分析:(1)由已知中M,N分别为PB,PC的中点,根据三角形中位线定理,可得MN∥BC,进而由线面平行的性质得到MN∥平面PAD;
(2)连接MQ,由(1)中结论MN∥平面PAD,同理可证明出QM∥平面PAD,进而由面面平行的判定定理得到平面MNQ∥平面PAD(利用面面平行的第二判定定理,也可以实现),进而由面面平行的性质得到QN∥平面PAD.
点评:本题考查的知识点是直线与平面平行的判定,平面与平面平行的性质,其中判断线面平行最常用的两种方法,就是根据线面平行的判定定理(如(1)中证明过程)和面面平行的性质定理(如(2)中证明过程).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案