分析 利用在同一平面上的三个单位向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,它们相互之间的夹角均为120°,且$|{k\overrightarrow a+2\overrightarrow b+\overrightarrow c}|-m>0$恒成立,k2-3k+3-m2>0恒成立,结合根的判别式,即可得出结论.
解答 解:∵在同一平面上的三个单位向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,它们相互之间的夹角均为120°,且$|{k\overrightarrow a+2\overrightarrow b+\overrightarrow c}|-m>0$恒成立
∴k2+4+1-2k-k-2>m2恒成立,
∴k2-3k+3-m2>0恒成立,
∴△=9-4(3-m2)<0
∴-$\frac{\sqrt{3}}{2}$<$m<\frac{{\sqrt{3}}}{2}$,
故答案为-$\frac{\sqrt{3}}{2}$<$m<\frac{{\sqrt{3}}}{2}$.
点评 本题主要考查两个向量的数量积的运算,求向量的模,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{13}{9}$ | D. | $\frac{5\sqrt{10}}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{2}$+y2=1 | B. | $\frac{{x}^{2}}{4}$+y2=1 | C. | x2+$\frac{{y}^{2}}{2}$=1 | D. | x2+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | 2$\sqrt{7}$ | C. | 6$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com