精英家教网 > 高中数学 > 题目详情
9.已知在同一平面上的三个单位向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,它们相互之间的夹角均为120°,且$|{k\overrightarrow a+2\overrightarrow b+\overrightarrow c}|-m>0$恒成立,则实数m的取值范围是-$\frac{\sqrt{3}}{2}$<$m<\frac{{\sqrt{3}}}{2}$.

分析 利用在同一平面上的三个单位向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,它们相互之间的夹角均为120°,且$|{k\overrightarrow a+2\overrightarrow b+\overrightarrow c}|-m>0$恒成立,k2-3k+3-m2>0恒成立,结合根的判别式,即可得出结论.

解答 解:∵在同一平面上的三个单位向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,它们相互之间的夹角均为120°,且$|{k\overrightarrow a+2\overrightarrow b+\overrightarrow c}|-m>0$恒成立
∴k2+4+1-2k-k-2>m2恒成立,
∴k2-3k+3-m2>0恒成立,
∴△=9-4(3-m2)<0
∴-$\frac{\sqrt{3}}{2}$<$m<\frac{{\sqrt{3}}}{2}$,
故答案为-$\frac{\sqrt{3}}{2}$<$m<\frac{{\sqrt{3}}}{2}$.

点评 本题主要考查两个向量的数量积的运算,求向量的模,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|1≤2x-3<16},B={x|log2(x-2)<3}求∁R(A∪B),∁R(A∩B),(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:“$\frac{{2{x^2}}}{m}$+$\frac{y^2}{m-1}$=1是焦点在x轴上的椭圆的标准方程”,命题q:“不等式组$\left\{{\begin{array}{l}{y≥0}\\{y≤x}\\{y≤-x+1}\\{y≤-2x+m}\end{array}}\right.$所表示的区域是三角形”.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线4x-3y=0与直线3x+y-1=0夹角的正切值为(  )
A.$\sqrt{3}$B.$\frac{3}{4}$C.$\frac{13}{9}$D.$\frac{5\sqrt{10}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式$\frac{2}{3-5x}≥3$解集为[$\frac{7}{15}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,在椭圆上的所有点到右焦点的距离的最大值为$\sqrt{2}$+1,则椭圆的方程为(  )
A.$\frac{{x}^{2}}{2}$+y2=1B.$\frac{{x}^{2}}{4}$+y2=1C.x2+$\frac{{y}^{2}}{2}$=1D.x2+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=x2+bx+c对任意的实数x都有f(1+x)=f(1-x),则f(2),f(1),f(4)的大小关系为f(4)>f(2)>f(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为60°,且|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{3}$,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$\sqrt{7}$B.2$\sqrt{7}$C.6$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等比数列{an}的首项a1、公比q,且${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$.
(1)求数列{an}的通项公式;
(2)设${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}为递增数列.若${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案