精英家教网 > 高中数学 > 题目详情
8.等差数列{an}的前n项和为Sn,数列{bn}是等比数列,且满足a1=3,b1=1,b2+S2=10,a5-2b2=a3,数列{${\frac{a_n}{b_n}}\right.$}的前n项和Tn,若Tn<M对一切正整数n都成立,则M的最小值为10.

分析 利用等差数列与等比数列的通项公式分别求出{an}以及{bn}和{${\frac{a_n}{b_n}}\right.$}的通项公式,利用错位相减法进行求和,利用不等式恒成立进行求解即可.

解答 解:设数列{an}的公差为d,数列{bn}的公比为q,
由b2+S2=10,a5-2b2=a3
得$\left\{\begin{array}{l}q+6+d=10\\ 3+4d-2q=3+2d\end{array}\right.$,解得$\left\{\begin{array}{l}d=2\\ q=2\end{array}\right.$
∴an=3+2(n-1)=2n+1,${b_n}={2^{n-1}}$.
则${\frac{a_n}{b_n}}\right.$=$\frac{2n+1}{{2}^{n-1}}$,
Tn=3+$\frac{5}{2}$+$\frac{7}{{2}^{2}}$+…+$\frac{2n+1}{{2}^{n-1}}$,
所以$\frac{1}{2}$Tn=$\frac{3}{2}$+$\frac{5}{{2}^{2}}$+$\frac{7}{{2}^{3}}$+…+$\frac{2n}{{2}^{n-1}}$+$\frac{2n+1}{{2}^{n}}$,
两式作差得$\frac{1}{2}$Tn=3+$\frac{2}{2}$+$\frac{2}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+$\frac{2}{{2}^{4}}$+…+$\frac{2}{{2}^{n-1}}$-$\frac{2n+1}{{2}^{n}}$
=3+(1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-2}}$)-$\frac{2n+1}{{2}^{n}}$=3+$\frac{1-(\frac{1}{2})^{n-1}}{1-\frac{1}{2}}$-$\frac{2n+1}{{2}^{n}}$=3+2-2•($\frac{1}{2}$)n-1-$\frac{2n+1}{{2}^{n}}$,
即Tn=10-($\frac{1}{2}$)n-3-$\frac{2n+1}{{2}^{n-1}}$<10,
由Tn<M对一切正整数n都成立,
∴M≥10,
故M的最小值为10,
故答案为:10

点评 本题主要考查数列通项公式的求解以及数列求和的计算,利用错位相减法是解决本题的关键.考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.“x>5”是式子lg(x2-4x-5)有意义的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈A}\\{lo{g}_{2}(2-x),x∈B}\end{array}\right.$,若f(x0)∈A,则x0的取值范围是(2-$\sqrt{2}$,1];若x0∈A,且f[f(x0)]∈A,则x0的取值范围是($\frac{3}{2}-\sqrt{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,直线DA过圆O的圆心,且交圆O于A,B两点,BC=CO=$\frac{1}{2}$BD,DM为圆O的一条割线,且与圆O交于M,T两点.
(1)证明:DT•DM=DO•DC;
(2)若∠DOT=80°,BM平分∠DMC,求∠BMC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知不等式|x2-3x-4|<2x+2的解集为{x|a<x<b}.
(Ⅰ)求a、b的值;
(Ⅱ)若m,n∈(-1,1),且mn=$\frac{a}{b}$,S=$\frac{a}{{{m^2}-1}}$+$\frac{b}{{3({{n^2}-1})}}$,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于x的方程f ( x )+x-a=0有两个实数根,则实数a的取值范围是(  )(其中,$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_2}x,x>0\end{array}\right.$)
A.(-∞,1]B.[0,1]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.抛物线C:y2=4x的焦点是F,准线是l,点A在l上,点B在C上,若$\overrightarrow{AB}$=2$\overrightarrow{BF}$,则|$\overrightarrow{BF}$|=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.已知在这30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$.
常喝不常喝合计
肥胖6        28     
不肥胖41822
合计102030
(1)请将上面的列联表补充完整.是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.
(2)现从常喝碳酸饮料且肥胖的学生(其中有2名女生)中,抽取2人参加电视节目,则正好抽到1男1女的概率是多少?
(3)现从常喝碳酸饮料的学生中抽取3人参加电视节目,记ξ表示常喝碳酸饮料且肥胖的学生人数,求ξ的分布列及数学期望.
参考数据:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.AC是圆O的直径,BD是圆O在点C处的切线,AB、AD分别与圆O相交于E,F,EF与AC相交于M,N是CD中点,AC=4,BC=2,CD=8
(Ⅰ)求AF的长;
(Ⅱ)证明:MN平分∠CMF.

查看答案和解析>>

同步练习册答案