19£®É輯ºÏA=[0£¬$\frac{1}{2}$£©£¬B=[$\frac{1}{2}$£¬1]£¬º¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+\frac{1}{2}£¬x¡ÊA}\\{lo{g}_{2}£¨2-x£©£¬x¡ÊB}\end{array}\right.$£¬Èôf£¨x0£©¡ÊA£¬Ôòx0µÄȡֵ·¶Î§ÊÇ£¨2-$\sqrt{2}$£¬1]£»Èôx0¡ÊA£¬ÇÒf[f£¨x0£©]¡ÊA£¬Ôòx0µÄȡֵ·¶Î§ÊÇ£¨$\frac{3}{2}-\sqrt{2}$£¬$\frac{1}{2}$£©£®

·ÖÎö ½áºÏÒÑÖªÖм¯ºÏA=[0£¬$\frac{1}{2}$£©£¬B=[$\frac{1}{2}$£¬1]£¬º¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+\frac{1}{2}£¬x¡ÊA}\\{lo{g}_{2}£¨2-x£©£¬x¡ÊB}\end{array}\right.$£¬·ÖÀàÌÖÂÛ£¬·Ö±ðÇó³öÂú×ãf£¨x0£©¡ÊAºÍf[f£¨x0£©]¡ÊAµÄx0µÄ·¶Î§£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£ºµ±x0¡ÊA=[0£¬$\frac{1}{2}$£©Ê±£¬f£¨x0£©¡Ê[$\frac{1}{2}$£¬1£©£¬
²»´æÔÚÂú×ãf£¨x0£©¡ÊAµÄx0Öµ£»
µ±x0¡ÊB=[$\frac{1}{2}$£¬1]£¬Ê±£¬f£¨x0£©¡Ê[0£¬log2$\frac{3}{2}$]£¬
ÓÉf£¨x0£©¡ÊA=[0£¬$\frac{1}{2}$£©µÃ£ºx0¡Ê£¨2-$\sqrt{2}$£¬1]£¬
×ÛÉϿɵãºx0µÄȡֵ·¶Î§ÊÇ£¨2-$\sqrt{2}$£¬1]£¬
ÓÉf[f£¨x0£©]¡ÊA=[0£¬$\frac{1}{2}$£©µÃ£ºf£¨x0£©¡Ê£¨2-$\sqrt{2}$£¬1]£¬
ÓÖÓÉx0¡ÊA=[0£¬$\frac{1}{2}$£©Ê±£¬f£¨x0£©¡Ê[$\frac{1}{2}$£¬1£©£¬¿ÉµÃ£ºx0¡Ê£¨$\frac{3}{2}-\sqrt{2}$£¬$\frac{1}{2}$£©£®
¹Ê´ð°¸Îª£º£¨2-$\sqrt{2}$£¬1]£¬£¨$\frac{3}{2}-\sqrt{2}$£¬$\frac{1}{2}$£©

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǷֶκ¯ÊýµÄÓ¦Óã¬Ò»´Îº¯ÊýºÍͼÏóºÍÐÔÖÊ£¬¶ÔÊýº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³Éú²úÏßÉÏ£¬ÖÊÁ¿¼à¶½Ô±¼×ÔÚÉú²úÏÖ³¡Ê±£¬990¼þ²úÆ·ÖÐÓкϸñÆ·982¼þ£¬´ÎÆ·8¼þ£»²»ÔÚÉú²úÏÖ³¡Ê±£¬510¼þ²úÆ·ÖÐÓкϸñÆ·493¼þ£¬´ÎÆ·17¼þ£¬ÊÔÀûÓÃͼÐÎÅжϼලԱ¼×²»ÔÚÉú²úÏÖ³¡¶Ô²úÆ·ÖÊÁ¿ºÃ»µÓÐÎÞÓ°Ï죮ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.001µÄǰÌáÏÂÈÏΪÖÊÁ¿¼à¶½Ô±¼×ÔÚ²»ÔÚÉú²úÏÖ³¡Óë²úÆ·ÖÊÁ¿ºÃ»µÓйØÏµ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¼ÇSk=1k+2k+3k+¡­+nk£¨n¡ÊN*£©£¬µ±k=1£¬2£¬3£¬¡­Ê±£¬¹Û²ìÏÂÁеÈʽ£º
S1=$\frac{1}{2}$n2+$\frac{1}{2}$n£¬
S2=$\frac{1}{3}$n3+$\frac{1}{2}$n2+$\frac{1}{6}$n£¬
S3=$\frac{1}{4}$n4+$\frac{1}{2}$n3+$\frac{1}{4}$n2£¬
S4=$\frac{1}{5}$n5+$\frac{1}{2}$n4+An3-$\frac{1}{30}$n£¬
S5=$\frac{1}{6}$n6+$\frac{1}{2}$n5+$\frac{5}{12}$n4+Bn2¡­
¿ÉÒÔÍÆ²â£¬A+B=$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÈýÌõÁ½Á½ÏཻµÄÖ±ÏßÒ»¶¨ÔÚÍ¬Ò»ÃæÄÚ
B£®´¹Ö±ÓÚͬһÌõÖ±ÏßµÄÁ½ÌõÖ±ÏßÒ»¶¨Æ½ÐÐ
C£®m£¬nÊÇÆ½Ãæ¦ÁÄÚµÄÁ½ÌõÏֱཻÏߣ¬l1£¬l2ÊÇÆ½Ãæ¦ÂÄÚµÄÁ½ÌõÏֱཻÏߣ¬Èôm¡Îl1£¬n¡Îl2£¬Ôò¦Á¡Î¦Â
D£®¦Á£¬¦Â£¬¦ÇÊÇÈý¸ö²»Í¬µÄÆ½Ãæ£¬Èô¦Á¡Í¦Ç£¬¦Â¡Í¦Ç£¬Ôò¦Á¡Î¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÈôÈ«¼¯ÎªÊµÊýR£¬¼¯ºÏA={x||2x-1|£¾3}£¬B={x|y=$\frac{4}{\sqrt{x-1}}$}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®{x|-1¡Üx¡Ü2}B£®{x|1£¼x¡Ü2}C£®{x|1¡Üx¡Ü2}D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÎªÁ˼ÓÈë´óѧµÄѧÉú»á£¬¼×¡¢ÒÒÁ½Î»´óÒ»ÐÂÉú·Ö±ðÔÚ7¸ö²¿ÃÅÖÐÑ¡Ôñ4¸ö½øÐÐÃæÊÔ£¬ÔòËûÃÇËùÑ¡µÄÃæÊÔ²¿ÃÅÖУ¬Ç¡ÓÐ3¸öÏàͬµÄÑ¡·¨ÓУ¨¡¡¡¡£©ÖÖ£®
A£®210B£®420C£®630D£®840

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª¡÷ABCÖУ¬¡ÏBAC£¬¡ÏABC£¬¡ÏBCAËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬AD¡ÍBCÇÒAD½»BCÓÚµãD£¬AD=a£¬Èô$\frac{si{n}^{2}¡ÏABC+si{n}^{2}¡ÏBCA+si{n}^{2}¡ÏBAC}{sin¡ÏABC•sin¡ÏBCA}$¡Ümºã³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª[2$\sqrt{2}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®µÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬ÇÒÂú×ãa1=3£¬b1=1£¬b2+S2=10£¬a5-2b2=a3£¬ÊýÁÐ{${\frac{a_n}{b_n}}\right.$}µÄǰnÏîºÍTn£¬ÈôTn£¼M¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬ÔòMµÄ×îСֵΪ10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚÆ½ÐÐËıßÐÎABCDµÄ±ßABºÍADÉÏ·Ö±ðÈ¡µãEºÍF£¬Ê¹${A}{E}=\frac{1}{3}{A}{B}$£¬${A}F=\frac{1}{4}{A}D$£¬Á¬½ÓEF½»¶Ô½ÇÏßACÓÚG£¬Ôò$\frac{{{A}G}}{{{A}C}}$µÄÖµÊÇ$\frac{1}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸