精英家教网 > 高中数学 > 题目详情
14.若全集为实数R,集合A={x||2x-1|>3},B={x|y=$\frac{4}{\sqrt{x-1}}$},则(∁RA)∩B=(  )
A.{x|-1≤x≤2}B.{x|1<x≤2}C.{x|1≤x≤2}D.

分析 求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A补集与B的交集即可.

解答 解:由A中不等式变形得:2x-1>3或2x-1<-3,
解得:x>2或x<-1,即A={x|x<-1或x>2},
∴∁RA={x|-1≤x≤2},
由B中y=$\frac{4}{\sqrt{x-1}}$,得到x-1>0,即x>1,
∴B={x|x>1},
则(∁RA)∩B={x|1<x≤2},
故选:B.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设关于x的方程k•9x-k•3x+1+6(k-5)=0在[0,2]内有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.第17届亚洲运动会于2014年9月19日--10月4日在韩国仁川举行.现有5个人去观看某日下午的比赛,根据组委会安排当天下午有甲、乙两场比赛,5人约定:每一个人通过一枚质地均匀的骰子决定自己观看哪场比赛,掷出点数为1或2的人去观看甲场比赛,掷出点数大于2的人去观看乙场比赛.
(1)求这5个人中恰有2人去观看甲场比赛的概率;
(2)求这5个人中去观看甲场比赛的人数大于去观看乙场比赛的人数的概率;
(3)用X,Y分别表示这5个人中观看甲、乙场比赛的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设知集合M={x|x2-2x-3<0},N={x|1≤x≤6},则M∩N=(  )
A.(1,3]B.[1,3)C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=-$\frac{1}{2}$x2-3x+tlnx在(1,+∞)上是减函数,则实数t的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈A}\\{lo{g}_{2}(2-x),x∈B}\end{array}\right.$,若f(x0)∈A,则x0的取值范围是(2-$\sqrt{2}$,1];若x0∈A,且f[f(x0)]∈A,则x0的取值范围是($\frac{3}{2}-\sqrt{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图的程序框图,若输出的值为$\frac{35}{4}$,则判断框中可以填(  )
A.i$>\frac{3}{2}$?B.i$≥\frac{3}{2}$?C.i>$\frac{5}{4}$?D.i$≥\frac{5}{4}$?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知不等式|x2-3x-4|<2x+2的解集为{x|a<x<b}.
(Ⅰ)求a、b的值;
(Ⅱ)若m,n∈(-1,1),且mn=$\frac{a}{b}$,S=$\frac{a}{{{m^2}-1}}$+$\frac{b}{{3({{n^2}-1})}}$,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx+$\frac{a}{x}$,a∈R,且函数f(x)在x=1处的切线平行于直线2x-y=0.
(Ⅰ)实数a的值;
(Ⅱ)若在[1,e](e=2.718…)上存在一点x0,使得x0+$\frac{1}{{x}_{0}}$<mf(x0)成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案