精英家教网 > 高中数学 > 题目详情
4.设关于x的方程k•9x-k•3x+1+6(k-5)=0在[0,2]内有解,求k的取值范围.

分析 设t=3x,由指数函数的单调性,可得t的范围,将方程化为k=$\frac{30}{{t}^{2}-3t+6}$在[1,9]有解,设f(t)=t2-3t+6,求出在[1,9]的值域,即可得到所求k的范围.

解答 解:设t=3x,由x∈[0,2],可得t∈[1,9],
方程k•9x-k•3x+1+6(k-5)=0,即为kt2-3kt+6(k-5)=0,
即k=$\frac{30}{{t}^{2}-3t+6}$在[1,9]有解,
由f(t)=t2-3t+6=(t-$\frac{3}{2}$)2+$\frac{15}{4}$,
当t=$\frac{3}{2}$∈[1,9]时,f(t)取得最小值$\frac{15}{4}$,
f(1)=4,f(9)=60,可得f(t)的最大值为60.
可得k的最小值为$\frac{30}{60}$=$\frac{1}{2}$,
k的最大值为$\frac{30}{\frac{15}{4}}$=8,
即有k的取值范围是[$\frac{1}{2}$,8].

点评 本题考查函数方程的转化思想,注意运用换元法和指数函数、二次函数的值域求法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.$\int_0^1$(2x-3x2)dx=(  )
A.-6B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=|lnx|,则函数y=f(x)-f(e-x)的零点的个数为(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.国内某大学有男生6000人,女生4000人,该校想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范围是[0,3],若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”,根据调查的数据按性别与“是否为‘运动达人’”进行统计,得到如表2×2列联表.
运动时间
性别 
运动达人非运动达人合计
男生 36  
女生  26 
合计  100 
(1)请根据题目信息,将2×2类联表中的数据补充完整,并通过计算判断能否在犯错误频率不超过0.025的前提下认为性别与“是否为‘运动达人’”有关;
(2)将此样本的频率估计为总体的概率,随机调查该校的3名男生,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆C经过直线x+y-1=0与x2+y2=4的交点,且圆C的圆心为(-2,-2),则过点(2,4)向圆C作切线,所得切线方程为x=2和5x-12y+38=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件,试利用图形判断监督员甲不在生产现场对产品质量好坏有无影响.能否在犯错误的概率不超过0.001的前提下认为质量监督员甲在不在生产现场与产品质量好坏有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知P-ABC为正三棱锥,底面边长为2,设D为PB的中点,且AD⊥PC,如图所示
(1)求证:PC⊥平面PAB;
(2)求二面角D-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)设直线l与圆C交于A、B两点,若|AB|=$\sqrt{17}$,求直线l的倾斜角;
(2)求证:对m∈R,直线l与圆C恒有两个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若全集为实数R,集合A={x||2x-1|>3},B={x|y=$\frac{4}{\sqrt{x-1}}$},则(∁RA)∩B=(  )
A.{x|-1≤x≤2}B.{x|1<x≤2}C.{x|1≤x≤2}D.

查看答案和解析>>

同步练习册答案