精英家教网 > 高中数学 > 题目详情
16.$\int_0^1$(2x-3x2)dx=(  )
A.-6B.-1C.0D.1

分析 根据定积分的计算法则,即可求出.

解答 解:$\int_0^1$(2x-3x2)dx=(x2-x3)|${\;}_{0}^{1}$=1-1=0,
故选:C.

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.对任意的x,y∈R+,定义x*y=$\frac{xy}{x+y}$,则(*)满足(  )
A.交换律B.结合律
C.交换律、结合律都不满足D.交换律、结合律都满足

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=$\sqrt{3-2x-{x}^{2}}$的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.观察下列不等式:
$\frac{{1}^{2}}{1}$=1,
$\frac{{1}^{2}+{2}^{2}}{1+2}$=$\frac{5}{3}$,
$\frac{{1}^{2}+{2}^{2}+{3}^{2}}{1+2+3}$=$\frac{7}{3}$,
$\frac{{1}^{2}+{2}^{2}+{3}^{2}+{4}^{2}}{1+2+3+4}$=3
,$\frac{{1}^{2}+{2}^{2}+{3}^{2}+{4}^{2}+5^{2}}{1+2+3+4+5}$=$\frac{11}{3}$,
…,
依此规律,第n个等式为$\frac{{1}^{2}{+2}^{2}{+3}^{2}+…{+n}^{2}}{1+2+3+…+n}$=$\frac{2n+1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设非零向量$\overrightarrow m$,$\overrightarrow n$,θ=<$\overrightarrow m,\overrightarrow n>$,规定:$\overrightarrow m$?$\overrightarrow n$=|$\overrightarrow m$||$\overrightarrow n$|sinθ,点M,N分别是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的上顶点和右顶点,且$\overrightarrow{OM}$?$\overrightarrow{ON}$=$\sqrt{3}$,离心率e=$\frac{{\sqrt{6}}}{3}$.
(1)求椭圆C的方程;
(2)设椭圆C与直线y=kx+m交于不同两点P,Q,又点A(0,-1),当|AP|=|AQ|时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x>0}\\{\sqrt{-4x-{x}^{2}}+b,x≤0}\end{array}\right.$在点(1,2)处的切线与f(x)的图象有三个公共点,则b的取值范围是(  )
A.[-8,-4+2$\sqrt{5}$)B.(-4-2$\sqrt{5}$,-4+2$\sqrt{5}$)C.(-4+2$\sqrt{5}$,8]D.(-4-2$\sqrt{5}$,-8]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线2mx-y-8m-3=0和圆(x-3)2+(y+6)2=25相交于A,B两点,当弦AB最短时,m的值为(  )
A.-$\frac{1}{6}$B.-6C.6D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,在四棱锥A-BCDE中,AE⊥面BCDE,△BCE是正三角形,BD和CE的交点F恰好平分CE,又AE=BE=2,∠CDE=120°,
(Ⅰ)证明:面ABD⊥面AEC;
(Ⅱ)求二面角B-CA-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设关于x的方程k•9x-k•3x+1+6(k-5)=0在[0,2]内有解,求k的取值范围.

查看答案和解析>>

同步练习册答案