精英家教网 > 高中数学 > 题目详情
4.AC是圆O的直径,BD是圆O在点C处的切线,AB、AD分别与圆O相交于E,F,EF与AC相交于M,N是CD中点,AC=4,BC=2,CD=8
(Ⅰ)求AF的长;
(Ⅱ)证明:MN平分∠CMF.

分析 (Ⅰ)连接CF,证明AC⊥CD,利用射影定理求AF的长;
(Ⅱ)证明CF⊥MN,利用MC=MF,即可证明:MN平分∠CMF.

解答 (Ⅰ)解:连接CF,
∵AC是圆O的直径,
∴CF⊥AF,
∵BD是圆O在点C处的切线,
∴AC⊥CD.
Rt△ACD中,AD=$\sqrt{16+64}$=4$\sqrt{5}$,
根据射影定理,AC2=AF•AD,
∴AF$\frac{4}{5}\sqrt{5}$;
(Ⅱ)证明:∵AC=4,BC=2,CD=8,∠ACB=∠ACD=90°,
∴△ACB∽△DCA,
∴∠BAC+∠CAD=90°,
∴EF是圆的直径,即M是圆心.
∵N是CD中点,
∴MN∥AD,
∴CF⊥MN.
∵MC=MF,
∴MN平分∠CMF.

点评 本题考查圆的切线的证明,考查射影定理的运用,考查三角形相似的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.等差数列{an}的前n项和为Sn,数列{bn}是等比数列,且满足a1=3,b1=1,b2+S2=10,a5-2b2=a3,数列{${\frac{a_n}{b_n}}\right.$}的前n项和Tn,若Tn<M对一切正整数n都成立,则M的最小值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平行四边形ABCD的边AB和AD上分别取点E和F,使${A}{E}=\frac{1}{3}{A}{B}$,${A}F=\frac{1}{4}{A}D$,连接EF交对角线AC于G,则$\frac{{{A}G}}{{{A}C}}$的值是$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a,b∈R,且|a|≠|b|,求证:$\frac{|{a}^{2}-{b}^{2}|}{\sqrt{1+{a}^{2}}+\sqrt{1+{b}^{2}}}$<|a-b|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,P(x0,y0)(y0≠0)是椭圆C:$\frac{x^2}{{2{λ^2}}}$+$\frac{y^2}{λ^2}$=1(λ>0)上的点,过点P的直线l的方程为$\frac{{{x_0}x}}{{2{λ^2}}}$+$\frac{{{y_0}y}}{λ^2}$=1.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)当λ=1时,设直线l与x轴、y轴分别相交于A,B两点,求△OAB面积的最小值;
(Ⅲ)设椭圆C的左、右焦点分别为F1,F2,点Q与点F1关于直线l对称,求证:点Q,P,F2三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E是BC的中点,F是棱CD上的动点,G为C1D1的中点,H为A1G的中点.
( I)当点F与点D重合时,求证:EF⊥AH;
( II)设二面角C1-EF-C的大小为θ,试确定点F的位置,使得sin θ=$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一点.
(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
(3)若AB=2,求当SA的值为多少时,二面角B-SC-D的大小为120°.并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,若△ACD~△ABC,则下列式子中成立的是(  )
A.AC•AD=AB•CDB.AC•BC=AB•ADC.CD2=AD•DBD.AC2=AD•AB

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f (x)=ln x和g(x)=$\frac{1}{2}{x^2}$+a(其中a为常数),直线l与f ( x ) 和g (x) 的图象都相切,且与f (x) 的图象的切点的横坐标为1.
(Ⅰ)求l的方程和a的值;  
(Ⅱ)求证:关于x 的不等式f ( x2+1)≤ln 2+g (x) 的解集为R.

查看答案和解析>>

同步练习册答案