19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬P£¨x0£¬y0£©£¨y0¡Ù0£©ÊÇÍÖÔ²C£º$\frac{x^2}{{2{¦Ë^2}}}$+$\frac{y^2}{¦Ë^2}$=1£¨¦Ë£¾0£©Éϵĵ㣬¹ýµãPµÄÖ±ÏßlµÄ·½³ÌΪ$\frac{{{x_0}x}}{{2{¦Ë^2}}}$+$\frac{{{y_0}y}}{¦Ë^2}$=1£®
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©µ±¦Ë=1ʱ£¬ÉèÖ±ÏßlÓëxÖá¡¢yÖá·Ö±ðÏཻÓÚA£¬BÁ½µã£¬Çó¡÷OABÃæ»ýµÄ×îСֵ£»
£¨¢ó£©ÉèÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µãQÓëµãF1¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÇóÖ¤£ºµãQ£¬P£¬F2Èýµã¹²Ïߣ®

·ÖÎö £¨¢ñ£©ÀûÓÃÍÖÔ²·½³Ì£¬Çó³öa£¬c£¬¼´¿ÉÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©ÓÉ$\frac{{{x_0}x}}{2}+{y_0}y=1$£¬Çó³öAµÄ×ø±ê£¬È»ºóÇó½âBµÄ×ø±ê£¬±íʾÈý½ÇÐεÄÃæ»ý£¬Í¨¹ýP£¨x0£¬y0£©ÔÚÍÖÔ²CÉÏ£¬ÀûÓûù±¾²»µÈʽÇó½âÈý½ÇÐÎOABÃæ»ýµÄ×îСֵ£®
£¨¢ó£©ÓÉ$\frac{x^2}{{2{¦Ë^2}}}$+$\frac{y^2}{¦Ë^2}$=1£¬Çó³ö$-\sqrt{2}¦Ë£¼{x_0}£¼\sqrt{2}¦Ë$£®¢Ùµ±x0=0ʱ£¬Çó³öP£¨0£¬¦Ë£©£¬Q£¨-¦Ë£¬2¦Ë£©£¬Ö¤Ã÷ÈýµãQ£¬P£¬F2¹²Ïߣ®¢Úµ±x0¡Ù0ʱ£¬ÉèQ£¨m£¬n£©£¬m¡Ù-¦Ë£¬F1QµÄÖеãΪM£¬Ôò$M£¨\frac{m-¦Ë}{2}£¬\frac{n}{2}£©$£¬´úÈëÖ±ÏßlµÄ·½³Ì£¬Çó³öQ×ø±ê£¬Í¨¹ýµãPµÄºá×ø±êÓëµãF2µÄºá×ø±êÏàµÈʱ£¬ËµÃ÷P£¬Q£¬F2Èýµã¹²Ïߣ®µãPµÄºá×ø±êÓëµãF2µÄºá×ø±ê²»ÏàµÈʱ£¬Ö¤Ã÷${k_{{F_2}Q}}={k_{{F_2}P}}$£¬ËµÃ÷Q£¬P£¬F2Èýµã¹²Ïߣ®

½â´ð £¨±¾Ð¡ÌâÂú·Ö14·Ö£©
½â£º£¨¢ñ£©ÒÀÌâ$a=\sqrt{2}¦Ë$£¬$c=\sqrt{2{¦Ë^2}-{¦Ë^2}}=¦Ë$£¬
ËùÒÔÍÖÔ²CÀëÐÄÂÊΪ$e=\frac{¦Ë}{{\sqrt{2}¦Ë}}=\frac{{\sqrt{2}}}{2}$£®¡­£¨3·Ö£©
£¨¢ò£©ÒÀÌâÒâx0¡Ù0£¬Áîy=0£¬ÓÉ$\frac{{{x_0}x}}{2}+{y_0}y=1$£¬µÃ$x=\frac{2}{x_0}$£¬Ôò$A£¨\frac{2}{x_0}£¬0£©$£®
Áîx=0£¬ÓÉ$\frac{{{x_0}x}}{2}+{y_0}y=1$£¬µÃ$y=\frac{1}{y_0}$£¬Ôò$B£¨0£¬\frac{1}{y_0}£©$£®
Ôò¡÷OABµÄÃæ»ý${S_{¡÷OAB}}=\frac{1}{2}|{OA}||{OB}|=\frac{1}{2}|{\frac{2}{{{x_0}{y_0}}}}|=\frac{1}{{|{{x_0}{y_0}}|}}$£®
ÒòΪP£¨x0£¬y0£©ÔÚÍÖÔ²C£º$\frac{x^2}{2}+{y^2}=1$ÉÏ£¬ËùÒÔ$\frac{{{x_0}^2}}{2}+{y_0}^2=1$£®
ËùÒÔ$1=\frac{{{x_0}^2}}{2}+{y_0}^2¡Ý2\frac{{|{{x_0}{y_0}}|}}{{\sqrt{2}}}$£¬¼´$|{{x_0}{y_0}}|¡Ü\frac{{\sqrt{2}}}{2}$£¬Ôò$\frac{1}{{|{{x_0}{y_0}}|}}¡Ý\sqrt{2}$£®
ËùÒÔ${S_{¡÷OAB}}=\frac{1}{2}|{OA}||{OB}|=\frac{1}{{|{{x_0}{y_0}}|}}¡Ý\sqrt{2}$£®
µ±ÇÒ½öµ±$\frac{{{x_0}^2}}{2}={y_0}^2$£¬¼´${x_0}=¡À1£¬{y_0}=¡À\frac{{\sqrt{2}}}{2}$ʱ£¬¡÷OABÃæ»ýµÄ×îСֵΪ$\sqrt{2}$£®                  ¡­£¨8·Ö£©
£¨¢ó£©ÓÉ$\frac{y_0^2}{¦Ë^2}=1-\frac{x_0^2}{{2{¦Ë^2}}}£¾0$£¬½âµÃ$-\sqrt{2}¦Ë£¼{x_0}£¼\sqrt{2}¦Ë$£®
¢Ùµ±x0=0ʱ£¬P£¨0£¬¦Ë£©£¬Q£¨-¦Ë£¬2¦Ë£©£¬´Ëʱ${k_{{F_2}P}}=-1$£¬${k_{{F_2}Q}}=-1$£®
ÒòΪ${k_{{F_2}Q}}={k_{{F_2}P}}$£¬ËùÒÔÈýµãQ£¬P£¬F2¹²Ïߣ®
µ±P£¨0£¬-¦Ë£©Ê±£¬Ò²Âú×㣮
¢Úµ±x0¡Ù0ʱ£¬ÉèQ£¨m£¬n£©£¬m¡Ù-¦Ë£¬F1QµÄÖеãΪM£¬Ôò$M£¨\frac{m-¦Ë}{2}£¬\frac{n}{2}£©$£¬´úÈëÖ±ÏßlµÄ·½³Ì£¬µÃ£º${x_0}m+2{y_0}n-{x_0}¦Ë-4{¦Ë^2}=0$£®
ÉèÖ±ÏßF1QµÄбÂÊΪk£¬Ôò$k=\frac{n}{m+¦Ë}=\frac{{2{y_0}}}{x_0}$£¬
ËùÒÔ2y0m-x0n+2y0¦Ë=0£®ÓÉ$\left\{{\begin{array}{l}{{x_0}m+2{y_0}n-{x_0}¦Ë-4{¦Ë^2}=0}\\{2{y_0}m-{x_0}n+2{y_0}¦Ë=0}\end{array}}\right.$£¬
½âµÃ$m=\frac{{2x_0^2¦Ë+4{x_0}{¦Ë^2}}}{4y_0^2+x_0^2}-¦Ë$£¬$n=\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{4y_0^2+x_0^2}$£®
ËùÒÔ$Q£¨\frac{{2x_0^2¦Ë+4{x_0}{¦Ë^2}}}{4y_0^2+x_0^2}-¦Ë£¬\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{4y_0^2+x_0^2}£©$£®
µ±µãPµÄºá×ø±êÓëµãF2µÄºá×ø±êÏàµÈʱ£¬°Ñx0=¦Ë£¬$y_0^2=\frac{¦Ë^2}{2}$´úÈë$m=\frac{{2x_0^2¦Ë+4{x_0}{¦Ë^2}}}{4y_0^2+x_0^2}-¦Ë$£¬µÃm=¦Ë£¬
ÔòP£¬Q£¬F2Èýµã¹²Ïߣ®
µ±µãPµÄºá×ø±êÓëµãF2µÄºá×ø±ê²»ÏàµÈʱ£¬
Ö±ÏßF2PµÄбÂÊΪ${k_{{F_2}P}}=\frac{y_0}{{{x_0}-¦Ë}}$£®
ÓÉ$-\sqrt{2}¦Ë¡Ü{x_0}¡Ü\sqrt{2}¦Ë$£¬x0¡Ù-2¦Ë£®
ËùÒÔÖ±ÏßF2QµÄбÂÊΪ${k_{{F_2}Q}}=\frac{{\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{4y_0^2+x_0^2}}}{{\frac{{2{x_0}^2¦Ë+4{x_0}{¦Ë^2}}}{4y_0^2+x_0^2}-2¦Ë}}=\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{{2{x_0}^2¦Ë+4{x_0}{¦Ë^2}-8y_0^2¦Ë-2x_0^2¦Ë}}$
=$\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{{4{x_0}{¦Ë^2}-8y_0^2¦Ë}}=\frac{{{x_0}{y_0}+2{y_0}¦Ë}}{{{x_0}¦Ë-2y_0^2}}=\frac{{{y_0}£¨{x_0}+2¦Ë£©}}{{{x_0}^2+¦Ë{x_0}-2{¦Ë^2}}}$
=$\frac{{{y_0}£¨{x_0}+2¦Ë£©}}{{£¨{x_0}-¦Ë£©£¨{x_0}+2¦Ë£©}}=\frac{y_0}{{{x_0}-¦Ë}}$£®
ÒòΪ${k_{{F_2}Q}}={k_{{F_2}P}}$£¬ËùÒÔQ£¬P£¬F2Èýµã¹²Ïߣ®
×ÛÉÏËùÊöQ£¬P£¬F2Èýµã¹²Ïߣ®¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÓ¦Óã¬ÍÖÔ²µÄ¼òµ¥ÐÔÖʵÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª²»µÈʽ|x2-3x-4|£¼2x+2µÄ½â¼¯Îª{x|a£¼x£¼b}£®
£¨¢ñ£©Çóa¡¢bµÄÖµ£»
£¨¢ò£©Èôm£¬n¡Ê£¨-1£¬1£©£¬ÇÒmn=$\frac{a}{b}$£¬S=$\frac{a}{{{m^2}-1}}$+$\frac{b}{{3£¨{{n^2}-1}£©}}$£¬ÇóSµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=lnx+$\frac{a}{x}$£¬a¡ÊR£¬ÇÒº¯Êýf£¨x£©ÔÚx=1´¦µÄÇÐÏ߯½ÐÐÓÚÖ±Ïß2x-y=0£®
£¨¢ñ£©ÊµÊýaµÄÖµ£»
£¨¢ò£©ÈôÔÚ[1£¬e]£¨e=2.718¡­£©ÉÏ´æÔÚÒ»µãx0£¬Ê¹µÃx0+$\frac{1}{{x}_{0}}$£¼mf£¨x0£©³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³¹¤³§ÓÐ25ÖÜËêÒÔÉÏ£¨º¬25ÖÜË꣩¹¤ÈË300Ãû£¬25ÖÜËêÒÔϹ¤ÈË200Ãû£®ÎªÑо¿¹¤È˵ÄÈÕÆ½¾ùÉú²úÁ¿ÊÇ·ñÓëÄêÁäÓйأ®ÏÖ²ÉÓ÷ֲã³éÑùµÄ·½·¨£¬´ÓÖгéÈ¡ÁË100Ãû¹¤ÈË£¬ÏÈͳ¼ÆÁËËûÃÇijÔµÄÈÕÆ½¾ùÉú²ú¼þÊý£¬È»ºó°´¹¤ÈËÄêÁäÔÚ¡°25ÖÜËêÒÔÉÏ£¨º¬25ÖÜË꣩¡±ºÍ¡°25ÖÜËêÒÔÏ¡±·ÖΪÁ½×飬ÔÚ½«Á½×鹤È˵ÄÈÕÆ½¾ùÉú²ú¼þÊý·Ö³É5×飺[50£¬60£©£¬[60£¬70£©£¬[70£¬80£©£¬[80£¬90£©£¬[90£¬100£©·Ö±ð¼ÓÒÔͳ¼Æ£¬µÃµ½ÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®

£¨1£©´ÓÑù±¾ÖÐÈÕÆ½¾ùÉú²ú¼þÊý²»×ã60¼þµÄ¹¤ÈËÖÐËæ»ú³éÈ¡2ÈË£¬ÇóÖÁÉٳ鵽һÃû¡°25ÖÜËêÒÔÏÂ×顱¹¤È˵ĸÅÂÊ£®
£¨2£©¹æ¶¨ÈÕÆ½¾ùÉú²ú¼þÊý²»ÉÙÓÚ80¼þÕßΪ¡°Éú²úÄÜÊÖ¡±£¬ÇëÄã¸ù¾ÝÒÑÖªÌõ¼þÍê³É2¡Á2µÄÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÓÐ90%µÄ°ÑÎÕÈÏΪ¡°Éú²úÄÜÊÖÓ빤ÈËËùÔÚµÄÄêÁä×éÓйء±£¿
P£¨X2¡Ýk£©0.1000.0500.0100.001
k2.7063.8416.63510.828
${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=ex-$\frac{a}{2}{x^2}{e^{|x|}}$£®
£¨1£©Èôf£¨x£©ÔÚ[0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©Ö¤Ã÷£ºµ±a¡Ý1ʱ£¬f£¨x£©¡Üx+1£»
£¨3£©¶ÔÓÚÔÚ£¨0£¬1£©ÖеÄÈÎÒ»¸öʵÊýa£¬ÊÔ̽¾¿ÊÇ·ñ´æÔÚx£¾0£¬Ê¹µÃf£¨x£©£¾x+1³ÉÁ¢£¿Èç¹û´æÔÚ£¬ÇëÇó³ö·ûºÏÌõ¼þµÄÒ»¸öx£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ACÊÇÔ²OµÄÖ±¾¶£¬BDÊÇÔ²OÔÚµãC´¦µÄÇÐÏߣ¬AB¡¢AD·Ö±ðÓëÔ²OÏཻÓÚE£¬F£¬EFÓëACÏཻÓÚM£¬NÊÇCDÖе㣬AC=4£¬BC=2£¬CD=8
£¨¢ñ£©ÇóAFµÄ³¤£»
£¨¢ò£©Ö¤Ã÷£ºMNƽ·Ö¡ÏCMF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ð±ÈýÀâÖùABC-A1B1C1µÄµ×ÃæÊDZ߳¤ÎªaµÄÕýÈý½ÇÐΣ¬²àÀâAA1³¤Îª$\frac{3}{2}$a£¬ËüºÍAB¡¢AC¾ùΪ60¡ã£¬Ð±ÈýÀâÖùµÄÈ«Ãæ»ý Ϊ$\frac{3+4\sqrt{3}}{2}{a}^{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ä³¸ßУµ÷²éϲ»¶¡°Í³¼Æ¡±¿Î³ÌÊÇ·ñÓëÐÔ±ðÓйأ¬Ëæ»ú³éÈ¡ÁË55¸öѧÉú£¬µÃµ½Í³¼ÆÊý¾ÝÈç±í
ϲ»¶²»Ï²»¶×ܼÆ
ÄÐÉú20
Å®Éú20
 ×ܼÆ3055
£¨1£©Íê³É±í¸ñµÄÊý¾Ý£»
£¨2£©ÅжÏÊÇ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.005µÄǰÌáÏÂÈÏΪϲ»¶¡°Í³¼Æ¡±¿Î³ÌÓëÐÔ±ðÓйأ¿
²Î¿¼¹«Ê½£ºK2=$\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬
P£¨K2¡Ýk0£©0.0250.010.0050.001
k05.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ¾­¹ýÖÐÐĵÄÏÒ³ÆÎªÍÖÔ²µÄÒ»ÌõÖ±¾¶£¬Æ½ÐÐÓÚ¸ÃÖ±¾¶µÄËùÓÐÏÒµÄÖеãµÄ¹ì¼£ÎªÒ»ÌõÏ߶Σ¬³ÆÎª¸ÃÖ±¾¶µÄ¹²éîÖ±¾¶£¬ÒÑÖªÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{4}$+y2=1£®
£¨1£©ÈôÒ»ÌõÖ±¾¶µÄбÂÊΪ$\frac{1}{3}$£¬Çó¸ÃÖ±¾¶µÄ¹²éîÖ±¾¶ËùÔÚµÄÖ±Ïß·½³Ì£»
£¨2£©ÈôÍÖÔ²µÄÁ½Ìõ¹²éîÖ±¾¶ÎªABºÍCD£¬ËüÃǵÄбÂÊ·Ö±ðΪk1£¬k2£¬Ö¤Ã÷£ºËıßÐÎACBDµÄÃæ»ýΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸