·ÖÎö £¨¢ñ£©ÀûÓÃÍÖÔ²·½³Ì£¬Çó³öa£¬c£¬¼´¿ÉÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©ÓÉ$\frac{{{x_0}x}}{2}+{y_0}y=1$£¬Çó³öAµÄ×ø±ê£¬È»ºóÇó½âBµÄ×ø±ê£¬±íʾÈý½ÇÐεÄÃæ»ý£¬Í¨¹ýP£¨x0£¬y0£©ÔÚÍÖÔ²CÉÏ£¬ÀûÓûù±¾²»µÈʽÇó½âÈý½ÇÐÎOABÃæ»ýµÄ×îСֵ£®
£¨¢ó£©ÓÉ$\frac{x^2}{{2{¦Ë^2}}}$+$\frac{y^2}{¦Ë^2}$=1£¬Çó³ö$-\sqrt{2}¦Ë£¼{x_0}£¼\sqrt{2}¦Ë$£®¢Ùµ±x0=0ʱ£¬Çó³öP£¨0£¬¦Ë£©£¬Q£¨-¦Ë£¬2¦Ë£©£¬Ö¤Ã÷ÈýµãQ£¬P£¬F2¹²Ïߣ®¢Úµ±x0¡Ù0ʱ£¬ÉèQ£¨m£¬n£©£¬m¡Ù-¦Ë£¬F1QµÄÖеãΪM£¬Ôò$M£¨\frac{m-¦Ë}{2}£¬\frac{n}{2}£©$£¬´úÈëÖ±ÏßlµÄ·½³Ì£¬Çó³öQ×ø±ê£¬Í¨¹ýµãPµÄºá×ø±êÓëµãF2µÄºá×ø±êÏàµÈʱ£¬ËµÃ÷P£¬Q£¬F2Èýµã¹²Ïߣ®µãPµÄºá×ø±êÓëµãF2µÄºá×ø±ê²»ÏàµÈʱ£¬Ö¤Ã÷${k_{{F_2}Q}}={k_{{F_2}P}}$£¬ËµÃ÷Q£¬P£¬F2Èýµã¹²Ïߣ®
½â´ð £¨±¾Ð¡ÌâÂú·Ö14·Ö£©
½â£º£¨¢ñ£©ÒÀÌâ$a=\sqrt{2}¦Ë$£¬$c=\sqrt{2{¦Ë^2}-{¦Ë^2}}=¦Ë$£¬
ËùÒÔÍÖÔ²CÀëÐÄÂÊΪ$e=\frac{¦Ë}{{\sqrt{2}¦Ë}}=\frac{{\sqrt{2}}}{2}$£®¡£¨3·Ö£©
£¨¢ò£©ÒÀÌâÒâx0¡Ù0£¬Áîy=0£¬ÓÉ$\frac{{{x_0}x}}{2}+{y_0}y=1$£¬µÃ$x=\frac{2}{x_0}$£¬Ôò$A£¨\frac{2}{x_0}£¬0£©$£®
Áîx=0£¬ÓÉ$\frac{{{x_0}x}}{2}+{y_0}y=1$£¬µÃ$y=\frac{1}{y_0}$£¬Ôò$B£¨0£¬\frac{1}{y_0}£©$£®
Ôò¡÷OABµÄÃæ»ý${S_{¡÷OAB}}=\frac{1}{2}|{OA}||{OB}|=\frac{1}{2}|{\frac{2}{{{x_0}{y_0}}}}|=\frac{1}{{|{{x_0}{y_0}}|}}$£®
ÒòΪP£¨x0£¬y0£©ÔÚÍÖÔ²C£º$\frac{x^2}{2}+{y^2}=1$ÉÏ£¬ËùÒÔ$\frac{{{x_0}^2}}{2}+{y_0}^2=1$£®
ËùÒÔ$1=\frac{{{x_0}^2}}{2}+{y_0}^2¡Ý2\frac{{|{{x_0}{y_0}}|}}{{\sqrt{2}}}$£¬¼´$|{{x_0}{y_0}}|¡Ü\frac{{\sqrt{2}}}{2}$£¬Ôò$\frac{1}{{|{{x_0}{y_0}}|}}¡Ý\sqrt{2}$£®
ËùÒÔ${S_{¡÷OAB}}=\frac{1}{2}|{OA}||{OB}|=\frac{1}{{|{{x_0}{y_0}}|}}¡Ý\sqrt{2}$£®
µ±ÇÒ½öµ±$\frac{{{x_0}^2}}{2}={y_0}^2$£¬¼´${x_0}=¡À1£¬{y_0}=¡À\frac{{\sqrt{2}}}{2}$ʱ£¬¡÷OABÃæ»ýµÄ×îСֵΪ$\sqrt{2}$£® ¡£¨8·Ö£©
£¨¢ó£©ÓÉ$\frac{y_0^2}{¦Ë^2}=1-\frac{x_0^2}{{2{¦Ë^2}}}£¾0$£¬½âµÃ$-\sqrt{2}¦Ë£¼{x_0}£¼\sqrt{2}¦Ë$£®
¢Ùµ±x0=0ʱ£¬P£¨0£¬¦Ë£©£¬Q£¨-¦Ë£¬2¦Ë£©£¬´Ëʱ${k_{{F_2}P}}=-1$£¬${k_{{F_2}Q}}=-1$£®
ÒòΪ${k_{{F_2}Q}}={k_{{F_2}P}}$£¬ËùÒÔÈýµãQ£¬P£¬F2¹²Ïߣ®
µ±P£¨0£¬-¦Ë£©Ê±£¬Ò²Âú×㣮
¢Úµ±x0¡Ù0ʱ£¬ÉèQ£¨m£¬n£©£¬m¡Ù-¦Ë£¬F1QµÄÖеãΪM£¬Ôò$M£¨\frac{m-¦Ë}{2}£¬\frac{n}{2}£©$£¬´úÈëÖ±ÏßlµÄ·½³Ì£¬µÃ£º${x_0}m+2{y_0}n-{x_0}¦Ë-4{¦Ë^2}=0$£®
ÉèÖ±ÏßF1QµÄбÂÊΪk£¬Ôò$k=\frac{n}{m+¦Ë}=\frac{{2{y_0}}}{x_0}$£¬
ËùÒÔ2y0m-x0n+2y0¦Ë=0£®ÓÉ$\left\{{\begin{array}{l}{{x_0}m+2{y_0}n-{x_0}¦Ë-4{¦Ë^2}=0}\\{2{y_0}m-{x_0}n+2{y_0}¦Ë=0}\end{array}}\right.$£¬
½âµÃ$m=\frac{{2x_0^2¦Ë+4{x_0}{¦Ë^2}}}{4y_0^2+x_0^2}-¦Ë$£¬$n=\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{4y_0^2+x_0^2}$£®
ËùÒÔ$Q£¨\frac{{2x_0^2¦Ë+4{x_0}{¦Ë^2}}}{4y_0^2+x_0^2}-¦Ë£¬\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{4y_0^2+x_0^2}£©$£®
µ±µãPµÄºá×ø±êÓëµãF2µÄºá×ø±êÏàµÈʱ£¬°Ñx0=¦Ë£¬$y_0^2=\frac{¦Ë^2}{2}$´úÈë$m=\frac{{2x_0^2¦Ë+4{x_0}{¦Ë^2}}}{4y_0^2+x_0^2}-¦Ë$£¬µÃm=¦Ë£¬
ÔòP£¬Q£¬F2Èýµã¹²Ïߣ®
µ±µãPµÄºá×ø±êÓëµãF2µÄºá×ø±ê²»ÏàµÈʱ£¬
Ö±ÏßF2PµÄбÂÊΪ${k_{{F_2}P}}=\frac{y_0}{{{x_0}-¦Ë}}$£®
ÓÉ$-\sqrt{2}¦Ë¡Ü{x_0}¡Ü\sqrt{2}¦Ë$£¬x0¡Ù-2¦Ë£®
ËùÒÔÖ±ÏßF2QµÄбÂÊΪ${k_{{F_2}Q}}=\frac{{\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{4y_0^2+x_0^2}}}{{\frac{{2{x_0}^2¦Ë+4{x_0}{¦Ë^2}}}{4y_0^2+x_0^2}-2¦Ë}}=\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{{2{x_0}^2¦Ë+4{x_0}{¦Ë^2}-8y_0^2¦Ë-2x_0^2¦Ë}}$
=$\frac{{4{x_0}{y_0}¦Ë+8{y_0}{¦Ë^2}}}{{4{x_0}{¦Ë^2}-8y_0^2¦Ë}}=\frac{{{x_0}{y_0}+2{y_0}¦Ë}}{{{x_0}¦Ë-2y_0^2}}=\frac{{{y_0}£¨{x_0}+2¦Ë£©}}{{{x_0}^2+¦Ë{x_0}-2{¦Ë^2}}}$
=$\frac{{{y_0}£¨{x_0}+2¦Ë£©}}{{£¨{x_0}-¦Ë£©£¨{x_0}+2¦Ë£©}}=\frac{y_0}{{{x_0}-¦Ë}}$£®
ÒòΪ${k_{{F_2}Q}}={k_{{F_2}P}}$£¬ËùÒÔQ£¬P£¬F2Èýµã¹²Ïߣ®
×ÛÉÏËùÊöQ£¬P£¬F2Èýµã¹²Ïߣ®¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÓ¦Óã¬ÍÖÔ²µÄ¼òµ¥ÐÔÖʵÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| P£¨X2¡Ýk£© | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ϲ»¶ | ²»Ï²»¶ | ×Ü¼Æ | |
| ÄÐÉú | 20 | ||
| Å®Éú | 20 | ||
| ×Ü¼Æ | 30 | 55 |
| P£¨K2¡Ýk0£© | 0.025 | 0.01 | 0.005 | 0.001 |
| k0 | 5.024 | 6.635 | 7.879 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com