·ÖÎö £¨1£©ÉèбÂÊΪ$\frac{1}{3}$µÄÓëÖ±¾¶Æ½ÐеÄÏҵĶ˵ã×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¸ÃÏÒÖеãΪ£¨x£¬y£©£¬ÀûÓÃÆ½·½²î·¨¼´¿ÉÇó³ö¸ÃÖ±¾¶µÄ¹²éîÖ±¾¶ËùÔÚµÄÖ±Ïß·½³Ì£®
£¨2£©ÍÖÔ²µÄÁ½Ìõ¹²éîÖ±¾¶ÎªABºÍCD£¬ËüÃǵÄбÂÊ·Ö±ðΪk1£¬k2£¬ÉèÓëABƽÐеÄÏҵĶ˵ã×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬±íʾ³öбÂÊ£¬µãµÄ×ø±ê´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃÆ½·½²î·¨Çó³öбÂʹØÏµ£¬È»ºóÇó³öA£¬B£¬C£¬D×ø±ê£¬ÉèµãCµ½Ö±ÏßABµÄ¾àÀëΪd£¬Çó³ö¾àÀëµÄ±í´ïʽ£¬¼´¿ÉÇó½âËıßÐÎACBDµÄÃæ»ýÊÇ·ñÊǶ¨Öµ£®
½â´ð ½â£º£¨1£©ÉèбÂÊΪ$\frac{1}{3}$µÄÓëÖ±¾¶Æ½ÐеÄÏҵĶ˵ã×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬
¸ÃÏÒÖеãΪ£¨x£¬y£©£¬ÔòÓÐ$\frac{x_1^2}{4}+y_1^2=1$£¬$\frac{x_2^2}{4}+y_2^2=1$£¬
Ïà¼õµÃ£º$\frac{{£¨{x_1}-{x_2}£©£¨{x_2}+{x_2}£©}}{4}+£¨{y_1}-{y_2}£©£¨{y_1}+{y_2}£©=0$£¬
ÓÉÓÚ$x=\frac{{{x_1}+{x_2}}}{2}$£¬$y=\frac{{{y_1}+{y_2}}}{2}$£¬ÇÒ$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{1}{3}$£¬ËùÒԵãº3x+4y=0£¬
¹Ê¸ÃÖ±¾¶µÄ¹²éîÖ±¾¶ËùÔÚµÄÖ±Ïß·½³ÌΪ3x+4y=0£®
£¨2£©ÍÖÔ²µÄÁ½Ìõ¹²éîÖ±¾¶ÎªABºÍCD£¬ËüÃǵÄбÂÊ·Ö±ðΪk1£¬k2£¬
ËıßÐÎACBDÏÔȻΪƽÐÐËıßÐΣ¬
ÉèÓëABƽÐеÄÏҵĶ˵ã×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬
Ôò${k_1}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}$£¬${k_2}=\frac{{{y_1}+{y_2}}}{{{x_1}+{x_2}}}$£¬¶ø$\frac{x_1^2}{4}+y_1^2=1$£¬$\frac{x_2^2}{4}+y_2^2=1$£¬$\frac{{£¨{x_1}-{x_2}£©£¨{x_2}+{x_2}£©}}{4}+£¨{y_1}-{y_2}£©£¨{y_1}+{y_2}£©=0$£¬
¹Ê${k_1}{k_2}=\frac{y_1^2-y_2^2}{x_1^2-x_2^2}=-\frac{1}{4}$£¬
ÓÉ$\left\{\begin{array}{l}y={k_1}x\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$µÃA£¬BµÄ×ø±ê·Ö±ðΪ$£¨\frac{2}{{\sqrt{1+4k_1^2}}}£¬\frac{{2{k_1}}}{{\sqrt{1+4k_1^2}}}£©$£¬$£¨-\frac{2}{{\sqrt{1+4k_1^2}}}£¬-\frac{{2{k_1}}}{{\sqrt{1+4k_1^2}}}£©$
¹Ê$|{AB}|=\frac{4}{{\sqrt{1+4k_1^2}}}\sqrt{1+k_1^2}$£¬
ͬÀíC£¬DµÄ×ø±ê·Ö±ðΪ$£¨\frac{2}{{\sqrt{1+4k_2^2}}}£¬\frac{{2{k_2}}}{{\sqrt{1+4k_2^2}}}£©$£¬$£¨-\frac{2}{{\sqrt{1+4k_2^2}}}£¬-\frac{{2{k_2}}}{{\sqrt{1+4k_2^2}}}£©$
ÉèµãCµ½Ö±ÏßABµÄ¾àÀëΪd£¬ËıßÐÎACBDµÄÃæ»ýΪS£¬
ËùÒÔ£¬$d=\frac{{|{\frac{{2{k_1}}}{{\sqrt{1+4k_2^2}}}-\frac{{2{k_2}}}{{\sqrt{1+4k_2^2}}}}|}}{{\sqrt{1+k_1^2}}}=\frac{{2|{{k_1}-{k_2}}|}}{{\sqrt{1+k_1^2}\sqrt{1+4k_2^2}}}$£¬
Ôò$S=d|AB|=\frac{2|{k}_{1}-{k}_{2}|}{\sqrt{1+{{k}_{1}}^{2}}\sqrt{1+4{{k}_{2}}^{2}}}¡Á\frac{4}{\sqrt{1+4{{k}_{1}}^{2}}}•\sqrt{1+{{k}_{1}}^{2}}$
=$\frac{8|{k}_{1}-{k}_{2}|}{\sqrt{1+4{{k}_{1}}^{2}}\sqrt{1+4{{k}_{2}}^{2}}}$
=8$\sqrt{\frac{{{k}_{1}}^{2}+{{k}_{2}}^{2}-2{k}_{1}{k}_{2}}{1+4£¨{{k}_{1}}^{2}+{{k}_{2}}^{2}£©+16{{k}_{1}}^{2}{{k}_{2}}^{2}}}$
=4£®
Ϊ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Óã¬Æ½·½²î·¨µÄÓ¦Ó㬵㵽ֱÏߵľàÀ빫ʽ¾àÀ빫ʽµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬¼ÆËãÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 16 cm2 | B£® | 18 cm2 | C£® | 20 cm2 | D£® | 22 cm2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì¸ÊËà»áÄþÏØÒ»ÖиßÈýÉÏѧÆÚ9ÔÂÔ¿¼Êýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ
Ñ¡ÐÞ4¡ª5£º²»µÈʽѡ½²
ÒÑÖªº¯Êýf£¨x£©£½|2x£a|£«a.
£¨1£©Èô²»µÈʽf£¨x£©¡Ü6µÄ½â¼¯Îª{x|£2¡Üx¡Ü3}£¬ÇóʵÊýaµÄÖµ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Èô´æÔÚʵÊýnʹf£¨n£©¡Üm£f£¨£n£©³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì¸ÊËà»áÄþÏØÒ»ÖиßÈýÉÏѧÆÚ9ÔÂÔ¿¼Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ
É躯Êý
£¬Èô
£¬Ôò
µÄÖµµÈÓÚ£¨ £©
A£®2loga8 B£®16 C£®8 D£®4
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com