9£®ÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ¾­¹ýÖÐÐĵÄÏÒ³ÆÎªÍÖÔ²µÄÒ»ÌõÖ±¾¶£¬Æ½ÐÐÓÚ¸ÃÖ±¾¶µÄËùÓÐÏÒµÄÖеãµÄ¹ì¼£ÎªÒ»ÌõÏ߶Σ¬³ÆÎª¸ÃÖ±¾¶µÄ¹²éîÖ±¾¶£¬ÒÑÖªÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{4}$+y2=1£®
£¨1£©ÈôÒ»ÌõÖ±¾¶µÄбÂÊΪ$\frac{1}{3}$£¬Çó¸ÃÖ±¾¶µÄ¹²éîÖ±¾¶ËùÔÚµÄÖ±Ïß·½³Ì£»
£¨2£©ÈôÍÖÔ²µÄÁ½Ìõ¹²éîÖ±¾¶ÎªABºÍCD£¬ËüÃǵÄбÂÊ·Ö±ðΪk1£¬k2£¬Ö¤Ã÷£ºËıßÐÎACBDµÄÃæ»ýΪ¶¨Öµ£®

·ÖÎö £¨1£©ÉèбÂÊΪ$\frac{1}{3}$µÄÓëÖ±¾¶Æ½ÐеÄÏҵĶ˵ã×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¸ÃÏÒÖеãΪ£¨x£¬y£©£¬ÀûÓÃÆ½·½²î·¨¼´¿ÉÇó³ö¸ÃÖ±¾¶µÄ¹²éîÖ±¾¶ËùÔÚµÄÖ±Ïß·½³Ì£®
£¨2£©ÍÖÔ²µÄÁ½Ìõ¹²éîÖ±¾¶ÎªABºÍCD£¬ËüÃǵÄбÂÊ·Ö±ðΪk1£¬k2£¬ÉèÓëABƽÐеÄÏҵĶ˵ã×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬±íʾ³öбÂÊ£¬µãµÄ×ø±ê´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃÆ½·½²î·¨Çó³öбÂʹØÏµ£¬È»ºóÇó³öA£¬B£¬C£¬D×ø±ê£¬ÉèµãCµ½Ö±ÏßABµÄ¾àÀëΪd£¬Çó³ö¾àÀëµÄ±í´ïʽ£¬¼´¿ÉÇó½âËıßÐÎACBDµÄÃæ»ýÊÇ·ñÊǶ¨Öµ£®

½â´ð ½â£º£¨1£©ÉèбÂÊΪ$\frac{1}{3}$µÄÓëÖ±¾¶Æ½ÐеÄÏҵĶ˵ã×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬
¸ÃÏÒÖеãΪ£¨x£¬y£©£¬ÔòÓÐ$\frac{x_1^2}{4}+y_1^2=1$£¬$\frac{x_2^2}{4}+y_2^2=1$£¬
Ïà¼õµÃ£º$\frac{{£¨{x_1}-{x_2}£©£¨{x_2}+{x_2}£©}}{4}+£¨{y_1}-{y_2}£©£¨{y_1}+{y_2}£©=0$£¬
ÓÉÓÚ$x=\frac{{{x_1}+{x_2}}}{2}$£¬$y=\frac{{{y_1}+{y_2}}}{2}$£¬ÇÒ$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{1}{3}$£¬ËùÒԵãº3x+4y=0£¬
¹Ê¸ÃÖ±¾¶µÄ¹²éîÖ±¾¶ËùÔÚµÄÖ±Ïß·½³ÌΪ3x+4y=0£®
£¨2£©ÍÖÔ²µÄÁ½Ìõ¹²éîÖ±¾¶ÎªABºÍCD£¬ËüÃǵÄбÂÊ·Ö±ðΪk1£¬k2£¬
ËıßÐÎACBDÏÔȻΪƽÐÐËıßÐΣ¬
ÉèÓëABƽÐеÄÏҵĶ˵ã×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬
Ôò${k_1}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}$£¬${k_2}=\frac{{{y_1}+{y_2}}}{{{x_1}+{x_2}}}$£¬¶ø$\frac{x_1^2}{4}+y_1^2=1$£¬$\frac{x_2^2}{4}+y_2^2=1$£¬$\frac{{£¨{x_1}-{x_2}£©£¨{x_2}+{x_2}£©}}{4}+£¨{y_1}-{y_2}£©£¨{y_1}+{y_2}£©=0$£¬
¹Ê${k_1}{k_2}=\frac{y_1^2-y_2^2}{x_1^2-x_2^2}=-\frac{1}{4}$£¬
ÓÉ$\left\{\begin{array}{l}y={k_1}x\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$µÃA£¬BµÄ×ø±ê·Ö±ðΪ$£¨\frac{2}{{\sqrt{1+4k_1^2}}}£¬\frac{{2{k_1}}}{{\sqrt{1+4k_1^2}}}£©$£¬$£¨-\frac{2}{{\sqrt{1+4k_1^2}}}£¬-\frac{{2{k_1}}}{{\sqrt{1+4k_1^2}}}£©$
¹Ê$|{AB}|=\frac{4}{{\sqrt{1+4k_1^2}}}\sqrt{1+k_1^2}$£¬
ͬÀíC£¬DµÄ×ø±ê·Ö±ðΪ$£¨\frac{2}{{\sqrt{1+4k_2^2}}}£¬\frac{{2{k_2}}}{{\sqrt{1+4k_2^2}}}£©$£¬$£¨-\frac{2}{{\sqrt{1+4k_2^2}}}£¬-\frac{{2{k_2}}}{{\sqrt{1+4k_2^2}}}£©$
ÉèµãCµ½Ö±ÏßABµÄ¾àÀëΪd£¬ËıßÐÎACBDµÄÃæ»ýΪS£¬
ËùÒÔ£¬$d=\frac{{|{\frac{{2{k_1}}}{{\sqrt{1+4k_2^2}}}-\frac{{2{k_2}}}{{\sqrt{1+4k_2^2}}}}|}}{{\sqrt{1+k_1^2}}}=\frac{{2|{{k_1}-{k_2}}|}}{{\sqrt{1+k_1^2}\sqrt{1+4k_2^2}}}$£¬
Ôò$S=d|AB|=\frac{2|{k}_{1}-{k}_{2}|}{\sqrt{1+{{k}_{1}}^{2}}\sqrt{1+4{{k}_{2}}^{2}}}¡Á\frac{4}{\sqrt{1+4{{k}_{1}}^{2}}}•\sqrt{1+{{k}_{1}}^{2}}$
=$\frac{8|{k}_{1}-{k}_{2}|}{\sqrt{1+4{{k}_{1}}^{2}}\sqrt{1+4{{k}_{2}}^{2}}}$
=8$\sqrt{\frac{{{k}_{1}}^{2}+{{k}_{2}}^{2}-2{k}_{1}{k}_{2}}{1+4£¨{{k}_{1}}^{2}+{{k}_{2}}^{2}£©+16{{k}_{1}}^{2}{{k}_{2}}^{2}}}$
=4£®
Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Óã¬Æ½·½²î·¨µÄÓ¦Ó㬵㵽ֱÏߵľàÀ빫ʽ¾àÀ빫ʽµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬P£¨x0£¬y0£©£¨y0¡Ù0£©ÊÇÍÖÔ²C£º$\frac{x^2}{{2{¦Ë^2}}}$+$\frac{y^2}{¦Ë^2}$=1£¨¦Ë£¾0£©Éϵĵ㣬¹ýµãPµÄÖ±ÏßlµÄ·½³ÌΪ$\frac{{{x_0}x}}{{2{¦Ë^2}}}$+$\frac{{{y_0}y}}{¦Ë^2}$=1£®
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©µ±¦Ë=1ʱ£¬ÉèÖ±ÏßlÓëxÖá¡¢yÖá·Ö±ðÏཻÓÚA£¬BÁ½µã£¬Çó¡÷OABÃæ»ýµÄ×îСֵ£»
£¨¢ó£©ÉèÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µãQÓëµãF1¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÇóÖ¤£ºµãQ£¬P£¬F2Èýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDÖУ¬AE£ºEB=1£º2£¬Èô¡÷AEFµÄÃæ»ýµÈÓÚ2cm2£¬Ôò¡÷CDFµÄÃæ»ýµÈÓÚ£¨¡¡¡¡£© 
A£®16 cm2B£®18 cm2C£®20 cm2D£®22 cm2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªsin¦Á-cos¦Á=$\frac{1}{5}$£¬ÇÒ0£¼¦Á£¼¦Ð£¬
£¨1£©Çósin£¨2¦Á-$\frac{¦Ð}{4}$£©µÄÖµ£»
£¨2£©Çó$\frac{sin2¦Á+2si{n}^{2}¦Á}{1-tan¦Á}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑ֪˫ÇúÏßµÄÒ»¸ö¶¥µãΪ£¨2£¬0£©£¬ÇÒ½¥½üÏߵķ½³ÌΪy=¡Àx£¬ÄÇô¸ÃË«ÇúÏߵıê×¼·½³ÌΪ$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf £¨x£©=ln xºÍg£¨x£©=$\frac{1}{2}{x^2}$+a£¨ÆäÖÐaΪ³£Êý£©£¬Ö±ÏßlÓëf £¨ x £© ºÍg £¨x£© µÄͼÏó¶¼ÏàÇУ¬ÇÒÓëf £¨x£© µÄͼÏóµÄÇеãµÄºá×ø±êΪ1£®
£¨¢ñ£©ÇólµÄ·½³ÌºÍaµÄÖµ£»  
£¨¢ò£©ÇóÖ¤£º¹ØÓÚx µÄ²»µÈʽf £¨ x2+1£©¡Üln 2+g £¨x£© µÄ½â¼¯ÎªR£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ö¸³öÏÂÁÐÃüÌâµÄÐÎʽ¼°¹¹³ÉËüµÄÃüÌ⣮
£¨1£©24¼ÈÊÇ8µÄ±¶Êý£¬ÓÖÊÇ6µÄ±¶Êý£»
£¨2£©ÁâÐÎÊÇÔ²µÄÄÚ½ÓËıßÐλòÊÇÔ²µÄÍâÇÐËıßÐΣ»
£¨3£©¾ØÐβ»ÊÇÆ½ÐÐËıßÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì¸ÊËà»áÄþÏØÒ»ÖиßÈýÉÏѧÆÚ9ÔÂÔ¿¼Êýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Ñ¡ÐÞ4¡ª5£º²»µÈʽѡ½²

ÒÑÖªº¯Êýf£¨x£©£½|2x£­a|£«a.

£¨1£©Èô²»µÈʽf£¨x£©¡Ü6µÄ½â¼¯Îª{x|£­2¡Üx¡Ü3}£¬ÇóʵÊýaµÄÖµ£»

£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Èô´æÔÚʵÊýnʹf£¨n£©¡Üm£­f£¨£­n£©³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì¸ÊËà»áÄþÏØÒ»ÖиßÈýÉÏѧÆÚ9ÔÂÔ¿¼Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

É躯Êý£¬Èô£¬ÔòµÄÖµµÈÓÚ£¨ £©

A£®2loga8 B£®16 C£®8 D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸