精英家教网 > 高中数学 > 题目详情
已知命题p:?x∈R,cos2x+sinx+a≥0,命题q:?x∈R,ax2-2x+a<0,命题p∨q为真,命题p∧q为假.求实数a的取值范围.
分析:通过分离参数求函数的最大值化简命题p;通过对二次项系数的讨论求出a的范围化简命题q;
据复合命题的真假得出命题p,q的真假,求出a的范围.
解答:解:由命题p得a≥-cos2x-sinx=2sin2x-sinx-1=2(sinx-
1
4
)2-
9
8

因为sinx∈[-1,1],
所以当sinx=-1时,(2sin2x-sinx-1)max=2,
所以命题p:a≥2
由命题q得:当a≤0时显然成立;
当a>0时,需满足△=4-4a2>0,解得0<a<1
所以命题q:a<1
因为命题p∨q为真,命题p∧q为假,所以命题p和q一真一假
若命题p真q假,则a≥2;若命题p假q真,则a<1
综上,实数a的取值范围是(-∞,1)∪[2,+∞)
点评:本题考查通过分离参数求函数的最值求参数的范围、解决二次函数注意对二次项系数的讨论、复合命题的真假与构成其简单命题的真假关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“?x∈R*,x>
1x
”,命题p的否定为命题q,则q是“
 
”;q的真假为
 
.(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①已知命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题;
②函数y=
|x|
x2+1
的最小值为
1
2
且它的图象关于y轴对称;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
⑤若tanθ=2,则sin2θ=
4
5

其中正确命题的序号为
①④⑤
①④⑤
.(把你认为正确的命题序号填在横线处)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,cosx≤1,则?p命题是
?x∈R,cosx>1
?x∈R,cosx>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是
①②③④
①②③④
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2x<3x;命题q:?x∈R,2x≥1+x2,则下列命题中为真命题的是(  )

查看答案和解析>>

同步练习册答案