精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2
x
+alnx-2
(a>0).
(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(2)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e-1,e]上有两个零点,求实数b的取值范围.
(I)由题意得,f(x)的定义域为(0,+∞),
∵f(x)=-
2
x2
+
a
x
,∴f(1)=-2+a,
∵直线y=x+2的斜率为1,∴-2+a=-1,解得a=1,
所以f(x)=
2
x
+lnx-2
,∴f(x)=-
2
x2
+
1
x
=
x-2
x2

由f′(x)>0解得x>2;由f′(x)<0解得0<x<2.
∴f(x)的单调增区间是(2,+∞),单调减区间是(0,2)
(II)依题得g(x)=
2
x
+lnx+x-2-b
,则g(x)=-
2
x2
+
1
x
+1
=
x2+x-2
x2

由g(x)>0解得x>1;由g(x)<0解得0<x<1.
∴函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.
又∵函数g(x)在区间[
1
e
,e]上有两个零点,∴
g(
1
e
)≥0
g(e)≥0
g(1)<0

解得1<b≤
2
e
+e-1
,∴b的取值范围是(1,
2
e
+e-1
].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案