精英家教网 > 高中数学 > 题目详情
已知数列an满足:2n•a1•a2•…•an=A2nn,n∈N*
(1)求数列an的通项公式;(2)若bn=an+2n+1,求数列{bnsin(nπ-
π2
)}
的前n项和.
分析:(1)根据等式求出n+1时,2n+1•a1•a2…an•an+1=A2n+2n+1和2n•a1•a2•…•an=A2nn,两式相除得到数列an的通项公式;
(2)把an代入到bn=an+2n+1中得到bn的通项公式,代入得到cn=bnsin(nπ-
π
2
)的通项公式,分别表示出cn的各项,讨论当n为奇数和偶数时表示出cn的前n项和,化简求出即可.
解答:解:(1)数列{an}满足:2n•a1•a2…an=A2nn,2n+1•a1•a2…an•an+1=A2n+2n+1
两式相除得:2an+1=
(2n+2)(2n+1)2n(2n-1)(n+2)
2n(2n-1)(2n-2)(n+2)(n+1)
=
(2n+2)(2n+1)
n+1
=4n+2
所以数列通项公式:an=2n-1
(2)由an=2n-1,bn=2n+2n,
bnsin(nπ-
π
2
)=(2n+2n)sin(nπ-
π
2
)=(-1)n+1(2n+2)
Tn=[2-22+23-24++(-1)n+1•2n]+2[1-2+3-4++(-1)n+1•n]
当n为偶数时,
Tn=
1-2n
1+2
-2
n
2
=-
2n+1
3
+
2
3
-n

当n为奇数时,
Tn=
2(1+2n)
1+2
 +2(1+
n-1
2
) =
2n+1
3
+
5
3
+n

Tn=
-
2n+1
3
+
2
3
-n 
2n+1
3
+
5
3
+n
点评:考查学生会根据题意求等差数列的通项公式,会分情况讨论并利用等比、等差数列求和公式求数列的和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an满足a1=2,
an+1
2an
=1+
1
n

(Ⅰ)求数列an的通项公式;
(Ⅱ)若数列{
an
n
}
的前n项和为Sn,试比较an-Sn与2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1=1,an+1=(1+cos2
2
)an+sin2
2
,n∈N*

(1)求a2,a3,a4;并求证:a2m+1+2=2(a2m-1+2),(m∈N*);
(2)设bn=
a2n
a2n-1
Sn=b1+b2+…+bn
,求证:Sn<n+
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足前2项的和为5,前6项的和为3.
(1)求数列{an}的通项公式;
(2)设bn=(4-an)•2n,(n∈N+),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列an满足a1=2,数学公式
(Ⅰ)求数列an的通项公式;
(Ⅱ)若数列数学公式的前n项和为Sn,试比较an-Sn与2的大小.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省潜江中学高三数学滚动训练20(理科)(解析版) 题型:解答题

已知数列an满足a1=2,
(Ⅰ)求数列an的通项公式;
(Ⅱ)若数列的前n项和为Sn,试比较an-Sn与2的大小.

查看答案和解析>>

同步练习册答案