精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,曲线y=x-6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.
(Ⅰ).(Ⅱ)该直线存在,其方程为.

试题分析:(Ⅰ)曲线轴的交点为
轴的交点为
故可设的圆心为
则有
解得
则圆的半径为
所以圆的方程为               4分
(Ⅱ)假设直线存在,依题意,设直线方程为
并设
,消去
得到方程
由已知可得,判别式
因此,
从而   ①
由于,可得

所以    ②
由①,②得,满足
所以该直线存在,其方程为           8分
点评:中档题,中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。恰当的运用圆中的“特征三角形”,转化成点到直线的距离问题,更为简洁。对存在性问题,常常是先假设存在,应用已知条件,确定其存在性,达到解体目的。本题较难。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且
(Ⅰ)求双曲线的方程;
(Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称
点为(不重合) 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是的角平分线, 证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl的极坐标方程为,曲线C2的参数方程为为参数)。
(1)当时,求曲线Cl与C2公共点的直角坐标; 
(2)若,当变化时,设曲线C1与C2的公共点为A,B,试求AB中点M轨迹的极坐标方程,并指出它表示什么曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与平面平行,P是直线上的一定点,平面内的动点B满足:PB与直线 。那么B点轨迹是 (    )                          
A.椭圆B.双曲线C.抛物线D.两直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1.
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=
(3)记
(A、B、是(2)中的点),,求的值.

查看答案和解析>>

同步练习册答案