精英家教网 > 高中数学 > 题目详情

若四棱柱的底面是边长为1的正方形,且侧棱垂直于底面,若与底面成60°角,则二面角的平面角的正切值为         

k

解析试题分析:因为所以 与底面成的角为,由,因为,连接,交,则
连接,则即为二面角的平面角,在中,
所以
考点:空间线面角和二面角的求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知是空间中两条不同的直线,是空间中三个不同的平面,则下列命题正确的序号是   
①若,则;  ②若,则
③若,则;   ④若,则

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设m,n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题:
(1)若m⊥α,n∥α,则m⊥n
(2)若α∥β,β∥γ,m⊥α,则m⊥γ
(3)若m∥α,n∥α,则m∥n
(4)若α⊥γ,β⊥γ,则α∥β
其中真命题的序号是          

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在三棱锥PABC中,,,,则两直线PCAB所成角的大小是______.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给出下列命题:
①若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
②若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
③若两条平行直线中的一条垂直于直线m,那么另一条直线也与直线m垂直;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中,真命题是________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,长方体ABCD—A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1
AB、CC1的中点,则异面直线A1E与GF所成的角是(   )

A.          B.     C.     D. 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

[2014·长春质检]如图,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

[2014·汕头质检]一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:

①AB⊥EF;
②AB与CM所成的角为60°;
③EF与MN是异面直线;
④MN∥CD.
以上四个命题中,正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对于直线m,n和平面α,β,γ,有如下四个命题:
①若m∥α,m⊥n,则n⊥α;
②若m⊥α,m⊥n,则n∥α;
③若α⊥β,γ⊥β,则α∥γ;
④若m⊥α,m∥n,n?β,则α⊥β.
其中正确命题的序号是________.

查看答案和解析>>

同步练习册答案