精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
13
x3+ax2+bx(a,b∈R)
在x=-1时取得极值.
(1)试用含a的代数式表示b;
(2)求f(x)的单调区间.
分析:(1)求出f′(x)=x2+2ax+b,因为函数在x=-1时取得极值,所以f′(-1)=0,即可得到a与b的关系式,表示出b即可;
(2)为函数f(x)存在极值点,所以方程f′(x)=0有两不相等的两实根,把b代入求出两根,根据两根的大小得到a的取值范围,①当x1>x2,即a>1时和②当x1<x2,即a<1时,来讨论导函数的正负得到函数的单调区间.
解答:解:(1)依题意,得f′(x)=x2+2ax+b,由于x=-1为函数的一个极值点,
则f′(-1)=1-2a+b=0,得b=2a-1;
(2)因为函数f(x)存在极值点,所以方程f′(x)=0有两不相等的两实根,
由(1)得f′(x)=x2+2ax+b=x2+2ax+2a-1=(x+1)(x+2a-1),
令f′(x)=0,解得x1=-1或x2=1-2a,
①当x1>x2,即a>1时,f′(x)与f(x)的变化情况如下表:
精英家教网
故函数f(x)的单调递增区间为(-∞,1-2a)和(-1,+∞),单调递减区间为(1-2a,-1);
②当x1<x2,即a<1时,
同理可得函数f(x)的单调递增区间为(-∞,-1)和(1-2a,+∞),单调递减区间为(-1,1-2a).
综上所述,当a>1时,函数f(x)的单调增区间为(-∞,1-2a)和(-1,+∞),单调减区间为(1-2a,-1);
当a<1时,函数f(x)的单调增区间为(-∞,-1)和(1-2a,+∞),单调减区间为(-1,1-2a)
点评:考查学生理解函数取极值的条件,会利用导数研究函数的增减性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案