精英家教网 > 高中数学 > 题目详情
已知椭圆方程为C:
x2
2
+y2
=1,它的左、右焦点分别为F1、F2.点P(x0,y0)为第一象限内的点.直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆上的点与两焦点连线的最大夹角;
(2)设直线PF1、PF2的斜率分别为k1、k2.试找出使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0成立的条件(用k1、k2表示).
(3)又已知点E为抛物线y2=2px(p>0)上一点,直线F2E与椭圆C的交点G在y轴的左侧,且满足
EG
=2
F2E
,求p的最大值.
分析:(1)利用椭圆的定义,结合余弦定理、基本不等式,即可求得椭圆上的点与两焦点连线的最大夹角;
(2)设出A,B,C,D的坐标,联立直线PF1和椭圆的方程根据韦达定理表示出xA+xB和xAxB,进而可求得直线OA,OB斜率的和与CO,OD斜率的和,由kOA+k)B+kOC+kOD=0推断出k1+k2=0或k1k2=1;
(3)设出G的坐标,可得E的坐标,利用E在抛物线上,可得p的函数,换元,利用基本不等,即可得到结论.
解答:解:(1)由题意,设椭圆上的点与两焦点连线的距离为m,n,夹角为α,则m+n=2
2

∴cosα=
m2+n2-4
2mn
=
2
mn
-1
∵m+n=2
2
2
mn

∴0<mn≤2
2
mn
-1≥0
∴cosα≥0
∴当m=n时,椭圆上的点与两焦点连线的最大夹角为90°;
(2)设直线PF1、PF2的方程分别为y=k1(x+1),y=k2(x-1),A(xA,yA),B(xB,yB),C(xC,yC),D(xD,yD),
联立直线PF1和椭圆的方程化简得(2k12+1)x2+4k12x+2k12-2=0,
因此xA+xB=-
4k12
2k12+1
,xAxB=
2k12-2
2k12+1
,所以kOA+kOB=
yA
xA
+
yB
xB
=-
2k1
k12-1

同理可得:kOC+kOD=-
2k2
k22-1

故由kOA+kOB+kOC+kOD=0得k1+k2=0或k1k2=1;
(3)F2(1,0),设G(x0,y0),(-
2
x0≤0
),则
EG
=2
F2E
,∴xE=
x0+2
3
,yE=
y0
3

∵E为抛物线y2=2px(p>0)上一点,
(
y0
3
)2=2p•
x0+2
3

x02
2
+y02=1

∴12p=
2-x02
x0+2

令t=x0+2,则2-
2
≤t<2

∴12p=-(t+
2
t
-4)≤-(2
2
-4),∴p≤
1
3
-
2
6
,当且仅当t=
2
时,取等号
x0=
2
-2
时,p的最大值为
1
3
-
2
6
点评:本题考查椭圆的定义,考查余弦定理、考查基本不等式的运用,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线方程为
x2
a2
-
y2
b2
=1(a>0,b>0)
,椭圆C以该双曲线的焦点为顶点,顶点为焦点.
(1)当a=
3
,b=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l:y=kx+
1
2
与y轴交于点P,与椭圆交与A,B两点,若O为坐标原点,△AOP与△BOP面积之比为2:1,求直线l的方程;
(3)若a=1,椭圆C与直线l':y=x+5有公共点,求该椭圆的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源:中学教材标准学案 数学 高二上册 题型:022

已知椭圆方程为=1,F1,F2分别是椭圆的两个焦点,则在下列几个命题中:

①与x轴的交点坐标为(±7,0);

②若椭圆上有一点P到F1的距离为10,则P到F2的距离为4;

③焦点在y轴上,其坐标为(0,±);

④a=49,b=9,c=40.

正确命题的序号有________.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知椭圆方程为数学公式,A、B分别是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,若数学公式,则椭圆的离心率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市闵行区七宝中学高三(下)摸底数学试卷(解析版) 题型:解答题

已知椭圆方程为C:=1,它的左、右焦点分别为F1、F2.点P(x,y)为第一象限内的点.直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆上的点与两焦点连线的最大夹角;
(2)设直线PF1、PF2的斜率分别为k1、k2.试找出使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0成立的条件(用k1、k2表示).
(3)又已知点E为抛物线y2=2px(p>0)上一点,直线F2E与椭圆C的交点G在y轴的左侧,且满足,求p的最大值.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省杭州市重点高中高考命题比赛数学参赛试卷02(文科)(解析版) 题型:选择题

已知椭圆方程为,A、B分别是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,若,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案