精英家教网 > 高中数学 > 题目详情
若x,y满足约束条件
x≥2
y≥2
x+y≤6.
则该不等式组表示的平面区域的面积为
 
,目标函数z=x+3y的最大值是
 
分析:先根据约束条件画出可行域,设z=x+3y,再利用z的几何意义求最值,只需求出直线z=x+3y过可行域内的点A时,从而得到z=x+3y的最大值即可.
解答:精英家教网解:先根据约束条件画出可行域,是一个直角三角形,
其面积为:S=
1
2
AB×AC=2.
由z=x+3y,
将z的值转化为直线z=x+3y在y轴上的截距的
1
3

当直线z=x+3y经过点C(2,4)时,z最大,
最大值为:14.
故答案为:2;14.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x,y满足约束条件
x≥0
y≤x
2x+y-4≤0
( k为常数),则使z=x+3y的最大值为(  )
A、9
B、
16
3
C、-12
D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足约束条件
x≥0
x+3y≥4
3x+y≤4
则z=-x+y的最小值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)若x,y满足约束条件
x≥0
x+2y≥3
2x+y≤3
,则z=x-y的最小值是
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足约束条件
x≥0
y≥0
2x+y-1≤0
则 x+2y
的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足约束条件
x-y+1≥0
x+y-3≤0
y≥0
,则z=x+2y的最大值为
 

查看答案和解析>>

同步练习册答案