精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系xOy中,若双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)经过抛物线y2=8x的焦点,则该双曲线的离心率是$\frac{\sqrt{5}}{2}$.

分析 根据题意,由抛物线的方程可得其焦点坐标,将其代入双曲线的方程可得a2的值,即可得双曲线的方程,计算可得c的值,由双曲线离心率公式计算可得答案.

解答 解:根据题意,抛物线的方程为y2=8x,
其焦点为(2,0),
若双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)经过点(2,0),
则有$\frac{4}{{a}^{2}}$-0=1,解可得a2=4,
即双曲线的方程为:$\frac{{x}^{2}}{4}$-y2=1,
则a=2,c=$\sqrt{4+1}$=$\sqrt{5}$,
则双曲线的离心率e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$;
故答案为:$\frac{\sqrt{5}}{2}$.

点评 本题考查双曲线、抛物线的几何性质,注意由抛物线的几何性质求出其焦点坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=2sin(2x+φ)(0<φ<$\frac{π}{2}$)的图象过点(0,$\sqrt{3}$),则函数f(x)在[0,π]上的单调减区间是[$\frac{π}{12}$,$\frac{7π}{12}$]【或($\frac{π}{12}$,$\frac{7π}{12}$)也正确】.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若P为可行域$\left\{\begin{array}{l}x≥-1\\ y≤2\\ 2x-y+2≤0\end{array}\right.$内的一点,过P的直线l与圆O:x2+y2=7交于A,B两点,则|AB|的最小值为(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点M,N是抛物线C:y=4x2上不同的两点,F为抛物线C的焦点,且满足∠MFN=135°,弦MN的中点P到C的准线l的距离记为d,若|MN|2=λ•d2,则λ的最小值为2+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x,y满足$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{ax-y-a≤0}\end{array}\right.$,若z=2x+y的最大值为$\frac{7}{2}$,则a的值为(  )
A.$-\frac{7}{2}$B.0C.1D.$-\frac{7}{2}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C-D-E-F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形,设DE=t百米,记修建每1百米参观线路的费用为f(t)万元,经测算f(t)=$\left\{\begin{array}{l}{5,0<t≤\frac{1}{3}}\\{8-\frac{1}{t},\frac{1}{3}<t<2}\end{array}\right.$

(1)用t表示线段EF的长;
(2)求修建参观线路的最低费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程为ρ=6sinθ,以极点O为原点,极轴为x轴的非负半轴建立直角坐标系,直线l的
参数方程为$\left\{\begin{array}{l}x=1+at\\ y=2+t\end{array}\right.$(t为参数).
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)直线l与曲线C交于B,D两点,当|BD|取到最小值时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}4x-{x^2},x≥0\\ \frac{3}{x},x<0\end{array}$,若函数g(x)=|f(x)|-3x+b有三个零点,则实数b的取值范围为$(-∞,-6)∪(-\frac{1}{4},0]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,已知$\overrightarrow{AB}=a$,$\overrightarrow{AC}=b$,$\overrightarrow{DC}=3\overrightarrow{BD}$,$\overrightarrow{AE}=2\overrightarrow{EC}$,则$\overrightarrow{DE}$=(  )
A.$\frac{3}{4}b-\frac{1}{3}a$B.$\frac{5}{12}a-\frac{3}{4}b$C.$\frac{3}{4}a-\frac{1}{3}b$D.$\frac{5}{12}b-\frac{3}{4}a$

查看答案和解析>>

同步练习册答案