精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=$\left\{\begin{array}{l}{x-3,x≥5}\\{f(x+2),x<5}\end{array}\right.$,则f(2)的值为3.

分析 利用分段函数化简求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{x-3,x≥5}\\{f(x+2),x<5}\end{array}\right.$,
则f(2)=f(2+2)=f(4)=f(6)=6-3=3.
故答案为:3.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如果命题“非p或非q”是假命题,给出下列四个结论:
①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;
④命题“p或q”是假命题.其中正确的结论是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各圆的标准方程:
(1)圆心在直线y=0上,且圆过两点A(1,4),B(3,2);
(2)圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=f(x)的定义域为D,且f(x)同时满足以下条件:
①f(x)在D上是单调递增或单调递减函数;
②存在闭区间[a,b]?D(其中a<b),使得当x∈[a,b]时,f(x)的取值集合也是[a,b].那么,我们称函数y=f(x)(x∈D)是闭函数.
(1)判断f(x)=-x3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.
(2)若f(x)=k+$\sqrt{x+2}$是闭函数,求实数k的取值范围.
(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α∈(-$\frac{π}{4}$,0),且sin2α=-$\frac{24}{25}$,则sinα+cosα=(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-$\frac{7}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.当实数m变化时,不在任何直线2mx+(1-m2)y-4m-4=0上的所有点(x,y)形成的图形的面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.直线经过点(9,4),横截距比纵截距大5,求此直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)时间经过4h(时),时针、分针各转了多少度?各等于多少弧度?
(2)有人说,钟的时针和分针一天内会重合24次,你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min会与时针重合,一天内分针和时针会重合n次,建立t关于n的函数关系式,并画出其图象,然后求出每次重合的时间.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x,y满足约束条件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x+y-1≥0}\\{x-y+1≥0}\end{array}\right.$,则x2+y2的最小值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案