精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=sinx-2cosx,当x=α时f(x)取得最大值,则cosα=-$\frac{2\sqrt{5}}{5}$.

分析 f(x)解析式利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=α时,函数f(x)取得最大值,得到sinα-2cosα=$\sqrt{5}$,与sin2α+cos2α=1联立即可求出cosα的值.

解答 解:f(x)=sinx-2cosx=$\sqrt{5}$($\frac{\sqrt{5}}{5}$sinx-$\frac{2\sqrt{5}}{5}$cosx)=$\sqrt{5}$sin(x-θ)
∵x=α时,函数f(x)取得最大值,
∴sin(α-θ)=1,即sinα-2cosα=$\sqrt{5}$,
又sin2α+cos2α=1,
联立得(2cosα+$\sqrt{5}$)2+cos2α=1,解得cosα=-$\frac{2\sqrt{5}}{5}$.
故答案为:-$\frac{2\sqrt{5}}{5}$.

点评 此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.${∫}_{0}^{\frac{π}{4}}$$\frac{cos2x}{cosx+sinx}$dx的值等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥D-ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC=$\sqrt{2}$a,E为BC的中点,F在棱AC上,且AF=3FC.
(1)求三棱锥D-ABC的体积;
(2)求证:AC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN=$\frac{3}{8}$CA,求证:MN∥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且2Sn=an+1-2n+1+1(n∈N*),a1=1.
(1)求证:数列{$\frac{{a}_{n}}{{2}^{n}}$+1}为等比数列,并求an
(2)设数列{bn}满足bn(3n-an)=$\frac{n+2}{n(n+1)}$,数列{bn}的前n项和为Tn,求证;Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义域为R的偶函数,当x≤0时,f(x)=(x+2)2ex-1,那么函数f(x)的极值点的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“-4≤b≤0”是“函数f(x)=x2+2x-b-3(-3≤x≤2)有两个零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知中心在原点的双曲线的焦点坐标是(0,5),且过点(0,3)则其标准方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=11C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某班有100名学生,一次考试后数学成绩ξ~N(100,102),若P(90≤ξ≤100)=0.34,则估计该班学生数学成绩在110分以上的人数为(  )
A.34B.32C.20D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积最大的面的面积是(  )
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案