精英家教网 > 高中数学 > 题目详情

已知,则求=________

练习册系列答案
相关习题

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:022

(1)已知f(2x-1)=ex,则f(x)=________.

(2)f(cosx-1)=sin2x,求f(x)=________.

(3)f()=,则f(x)=________.

查看答案和解析>>

科目:高中数学 来源:导学大课堂必修四数学苏教版 苏教版 题型:044

(1)在已知圆内,∠AOB=1弧度,它所对的弦长为2,则∠AOB所对弧长为多少?

(2)扇形OAB的面积是1 cm2,它的周长是4 cm,求它的圆心角和弦AB的长.

查看答案和解析>>

科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ly=2x-2,圆Cx2y2+2x+4y+1=0,请判断直线l与圆C的位置关系,若相交,则求直线l被圆C所截的线段长.

查看答案和解析>>

同步练习册答案