精英家教网 > 高中数学 > 题目详情

函数f(x)是奇函数,且在[-1,1]是单调增函数,又f(-1)=-1,则满足f(x)≤t2+2at+1对所有的x∈[-1,1]及a∈[-1,1]都成立的t的范围是________.

(-∞.-2]∪{0}∪[2,+∞)
分析:由已知中函数f(x)是奇函数,且在[-1,1]是单调增函数,又f(-1)=-1,我们易求出当x∈[-1,1]时,函数f(x)值域,然后可以将不等式f(x)≤t2+2at+1转化为函数恒成立问题,对t值进行分类讨论后,即可得到答案.
解答:∵函数f(x)是奇函数,且在[-1,1]是单调增函数,又f(-1)=-1,
∴f(1)=1,
∴当x∈[-1,1]时,f(x)∈[-1,1]
若f(x)≤t2+2at+1对所有的x∈[-1,1]及a∈[-1,1]都成立
则t2+2at+1≥1在a∈[-1,1]上恒成立
当t=0时,不等式恒成立,满足条件;
当t>0时,不等式可化为:t2-2t+1≥1,解得t≥2;
当t<0时,不等式可化为:t2+2t+1≥1,解得t≤-2;
综上满足条件的t的范围是(-∞.-2]∪{0}∪[2,+∞)
故答案为:(-∞.-2]∪{0}∪[2,+∞)
点评:本题考查的知识点是奇偶性与单调性的综合,其中根据已知结合函数的奇偶性与单调性判断出当x∈[-1,1]时,函数f(x)值域,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-
a
x
(a>0),有下列四个命题:
①f(x)的值域是(-∞,0)∪(0,+∞);
②f(x)是奇函数;
③f(x)在(-∞,0)∪(0,+∞)上单调递增;
④方程|f(x)|=a总有四个不同的解,其中正确的是(  )
A、仅②④B、仅②③
C、仅①②D、仅③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),当x,y∈R时恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)若f(-3)=a,试用a表示f(24);
(3)若x>0时f(x)<0且f(1)=-
12
,试求f(x)在区间[-2,6]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(1+x),g(x)=loga(1+kx),其中a>0且a≠1.
(Ⅰ)当k=-2时,求函数h(x)=f(x)+g(x)的定义域;
(Ⅱ)若函数H(x)=f(x)-g(x)是奇函数(不为常函数),求实数k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )
A.?x∈R且x≠0有f(-x)=(-x)+
1
-x
=-(x+
1
x
)=-f(x),∴f(x)是奇函数
B.?x∈R且x≠0有f(x)+f(-x)=x+
1
x
+(-x)+(-
1
x
)=0,∴f(x)=-f(-x),∴f(x)是奇函数
C.?x∈R且x≠0,∵f(x)≠0,∴
f(-x)
f(x)
=
-x-
1
x
x+
1
x
=-1,∴f(-x)=-f(x),∴f(x)是奇函数
D.取x=-1,f(-1)=-1+
1
-1
=-2,又f(1)=1+
1
1
=2

查看答案和解析>>

同步练习册答案