精英家教网 > 高中数学 > 题目详情
13.直线xtan60°+y-2=0的倾斜角为(  )
A.30°B.60°C.120°D.150°

分析 由直线方程求出直线的斜率,即得倾斜角的正切值,从而求出倾斜角.

解答 解:设直线的倾斜角为α,
∵直线xtan60°+y-2=0,
∴y=-xtan60°+y+2,
∴直线的斜率为k=-tan60°=tan120°,
∵0°≤α<180°,
∴α=120°.
故选:C.

点评 本题考查了直线的倾斜角与斜率的问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知圆锥底面半径和高分别为2cm,3cm,求圆锥侧面上的点到底面圆心的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设定义区间[-1,1]的函数f(x)=sin(πx+φ)(其中0<φ<π)是偶函数,则函数f(x)的单调减区为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设m≠n,mn≠0,a>1,x=${(a+\sqrt{{a}^{2}-1})}^{\frac{2mn}{m-n}}$,求(${x}^{\frac{1}{n}}$+${x}^{\frac{1}{m}}$)2-4a2${x}^{\frac{1}{m}+\frac{1}{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{sin\frac{11π}{3}}{cos\frac{4π}{3}}$sin(2x+φ),0<φ<$\frac{π}{2}$,且f(x)的图象关于直线x=$\frac{π}{12}$对称.
(1)求函数f(x)的单调递增区间;
(2)若对于任意的x∈[0,$\frac{π}{2}$],都有m2-3m+$\frac{1}{2}$≤f(x)≤-m2+3m+$\sqrt{3}$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知α∈(0,$\frac{π}{2}$),cos$α=\frac{3}{5}$.
(1)求tan2α的值;
(2)求sin(2$α+\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若向量$\overrightarrow{OA}$=(1,1),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则|$\overrightarrow{AB}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若A={(x,y)|ax-y2+b=0},B={(x,y)|x2-ay-b=0},(1,2)∈A∩B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如果集合A有下列性质:“若2k∈A,则2k-1∈A且2k+1∈A”,则称子集A⊆M={1,2,3,4,5,6,7,8,9,10,11}是“好子集”(空集和M都是好子集),问:M中有多少包含有2个偶数的好子集?

查看答案和解析>>

同步练习册答案