精英家教网 > 高中数学 > 题目详情
7.设F(x)为f(x)的原函数,且当x≥0时有:f(x)F(x)=$\frac{x{e}^{x}}{2(1+x)^{2}}$,已知F(0)=1,F(x)>0,试求f(x).

分析 根据题意,得出∫f(x)F(x)dx=∫F(x)dF(x)=$\frac{1}{2}$F2(x),
求出F2(x),即得F(x),从而求出f(x).

解答 解:F(x)为f(x)的原函数,且当x≥0时有:f(x)F(x)=$\frac{x{e}^{x}}{2(1+x)^{2}}$,
∴∫f(x)F(x)dx=∫$\frac{{xe}^{x}}{{2(1+x)}^{2}}$dx;
又∫F(x)dF(x)=$\frac{1}{2}$F2(x),
∴F2(x)=∫$\frac{{xe}^{x}}{{(1+x)}^{2}}$dx
=-∫xexd($\frac{1}{1+x}$)
=-$\frac{{xe}^{x}}{1+x}$+∫$\frac{1}{1+x}$(1+x)exdx
=-$\frac{{xe}^{x}}{1+x}$+ex+C
=$\frac{{e}^{x}}{1+x}$+C;
又F(0)=1,F(x)>0,
∴F2(x)=$\frac{{e}^{x}}{1+x}$,
∴F(x)=$\sqrt{\frac{{e}^{x}}{1+x}}$
∴f(x)=F′(x)
=$\frac{1}{2}$$\sqrt{\frac{1+x}{{e}^{x}}}$•$\frac{{e}^{x}(1+x){-e}^{x}}{{(1+x)}^{2}}$
=$\frac{1}{2}$$\sqrt{\frac{1+x}{{e}^{x}}}$•$\frac{{xe}^{x}}{{(1+x)}^{2}}$,x≥0.

点评 本题考查了导数的应用问题,也考查了积分与原函数的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知U=R,集合A={x|(x-2)[x-(3a+1)<0]},集合$B=\left\{{x\left|{\frac{x-2a}{{x-({{a^2}+1})}}<0}\right.}\right\}$.
(1)当a=2时,求A∩∁UB;
(2)当a≠1时,若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设向量$\overrightarrow a$与$\overrightarrow b$满足$\overrightarrow a$=(-2,1),$\overrightarrow a$+$\overrightarrow b$=(-1,-2),则|${\overrightarrow a$-$\overrightarrow b}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式(x+1)(2-x)≥0的解集为(  )
A.{x|-l≤x≤2}B.{x|-1<x<2}C.{x|x≥2,或-1≤-1}D.{x|x>2,或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\sqrt{(x-1)^{2}+1}$+$\sqrt{(x+1)^{2}+1}$,则f(x)的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=(x2+mx+m)e-x
(1)当m=0时,求f(x)的单调区间;
(2)若m≤2,证明:当x≥0时,f(x)≤2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知a为常数,且0<a<1,函数f(x)=(1+x)a-ax,求函数f(x)在x>-1上的最大值;
(2)若a,b均为正实数,求证:ab+ba>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若抛物线y2=8x上一点P到其焦点的距离为9,则点P的坐标为(  )
A.(7,±$\sqrt{14}$)B.(14,±$\sqrt{14}$)C.(7,±2$\sqrt{14}$)D.(-7,±2$\sqrt{14}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\left\{\begin{array}{l}{2•{e}^{x-1},x≤2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,则f[f(2)]=(  )
A.0B.1C.3D.2

查看答案和解析>>

同步练习册答案