分析 (1)构造函数的表达式为:a+$\frac{1}{a}$类型,利用基本不等式求解函数的最小值即可.
(2)转化函数的构造函数的表达式为:a+$\frac{1}{a}$类型,利用基本不等式求解函数的最小值即可.
解答 解:(1)∵x>-1,∴x+1>0.
∴y=x+$\frac{4}{x+1}$+6=x+1+$\frac{4}{x+1}$+5≥2$\sqrt{(x+1)•\frac{1}{x+1}}$+5=9,
当且仅当x+1=$\frac{4}{x+1}$,即x=1时,取等号.
∴x=1时,函数的最小值是9.
(2)y=$\frac{x^2+8}{x-1}$=$\frac{{x}^{2}-1+9}{x-1}$=(x+1)+$\frac{9}{x-1}$=(x-1)+$\frac{9}{x-1}$+2.
∵x>1,∴x-1>0.
∴(x-1)+$\frac{9}{x-1}$+2≥2$\sqrt{(x-1)•\frac{1}{x-1}}$+2=8.
当且仅当x-1=$\frac{9}{x-1}$,即x=4时等号成立,
点评 本题考查基本不等式在最值中的应用,注意基本不等式成立的条件,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2cos$\frac{α}{2}$ | B. | -2cos$\frac{α}{2}$ | C. | 2sin$\frac{α}{2}$ | D. | -2sin$\frac{α}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$ | C. | $\frac{1}{2}$或$\sqrt{3}$ | D. | $\frac{{\sqrt{2}}}{2}$或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | e |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $-\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com