分析 (I)由S=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$=$\frac{1}{2}$acsinB,代入cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,即可得出.
(II)由a,b,c成等比数列,可得ac=b2,由正弦定理可得:sinAsinC=sin2B.
解答 解:(I)在△ABC中,∵S=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$=$\frac{1}{2}$acsinB,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$.
∴tanB=$\sqrt{3}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$.
(II)∵a,b,c成等比数列,
∴ac=b2,
由正弦定理可得:sinAsinC=sin2B=$(\frac{\sqrt{3}}{2})^{2}$=$\frac{3}{4}$.
点评 本题考查了正弦定理余弦定理、三角形面积计算公式、等比数列的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1 | C. | -$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1 | D. | -$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=x g(x)=$\root{3}{{x}^{3}}$ | ||
| C. | f(x)=sinx g(x)=sin(π+x) | D. | f(x)=x g(x)=elnx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com