精英家教网 > 高中数学 > 题目详情
9.已知某几何体的正视图和俯视图如图所示,则该几何体的侧视图是(  )
A.B.C.D.

分析 几何体为正方体的面对角线组成的三棱锥.作出直观图即可判断出答案.

解答 解:由主视图和俯视图可知该几何体是从正方体ABCD-A′B′C′D′中截出的三棱锥A-B′CD′.如图所示:
∴该几何体的左视图为B.
故选B.

点评 本题考查了常见几何体的三视图,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知sinα-sinβ=1-$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,则cos(α-β)的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等腰Rt△ABC的斜边BC=$\sqrt{2}$,则($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$+|$\overrightarrow{BC}$-$\overrightarrow{BA}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算$\frac{x}{3-x}$+2=$\frac{3x}{x+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.满足不等式${(\frac{1}{3})^x}>\root{3}{9}$的实数x的取值范围为(  )
A.$x>-\frac{2}{3}$B.$x>-\frac{3}{2}$C.$x<-\frac{2}{3}$D.$x<-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$.
(Ⅰ)求角B的大小;
(Ⅱ)边a,b,c成等比数列,求sinAsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知长方体ABCD-A1B1C1D1,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,E,F分别为AA1,C1D1中点,则$\overrightarrow{EF}$可用$\vec a,\vec b,\vec c$表示为$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{c}$)+$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)若函数g(x)的单调区间为(-$\frac{1}{3}$,1),求函数g(x)的解析式;
(2)在(1)的条件下,求函数g(x)过点P(1,1)的切线方程;
(3)若对任意的x∈(0,+∞),不等式2f(x)≤g′(x)+2(其中g′(x)是g(x)的导函数)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知m,n,l为三条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是(  )
A.若m⊥l,n⊥l,则m∥nB.若m∥α,n∥α,则m∥nC.若m⊥α,n⊥α,则m∥nD.若α⊥γ,β⊥γ,则α∥β

查看答案和解析>>

同步练习册答案