分析 根据题意,sinα-sinβ=1-$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,将两个式子平方后求和可得(sinα-sinβ)2+(cosα-cosβ)2=(1-$\frac{\sqrt{3}}{2}$)2+$\frac{1}{2}$2,进而变形可得cosαcosβ+sinαsinβ=$\frac{\sqrt{3}}{2}$,结合余弦的差角公式计算可得答案.
解答 解:根据题意,sinα-sinβ=1-$\frac{\sqrt{3}}{2}$ ①,cosα-cosβ=$\frac{1}{2}$ ②,
①2+②2可得:(sinα-sinβ)2+(cosα-cosβ)2=(1-$\frac{\sqrt{3}}{2}$)2+$\frac{1}{2}$2,
变形可得:2-2(cosαcosβ+sinαsinβ)=2-$\sqrt{3}$,
即cosαcosβ+sinαsinβ=$\frac{\sqrt{3}}{2}$,
又由cos(α-β)=cosαcosβ+sinαsinβ,
则cos(α-β)=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$.
点评 本题考查余弦的和差公式,涉及同角三角函数的基本关系式的运用,关键是灵活运用余弦的差角公式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=${x}^{\frac{1}{2}}$ | B. | f(x)=x3 | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=lo${g}_{\frac{1}{2}}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1 | C. | -$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1 | D. | -$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com