| 班级 | 1 | 2 | 3 | 4 | 5 |
| 数学(x分) | 111 | 113 | 119 | 125 | 127 |
| 物理(y分) | 92 | 93 | 96 | 99 | 100 |
分析 (Ⅰ)求出回归系数,即可求两个变量x,y的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)随机变量X的所有可能的取值为0,1,2.求出相应概率,即可求X的分布列和数学期望.
解答 解:(Ⅰ)由题意得$\overline x=119$,$\overline y=96$$\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})=100$,$\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}=200$,$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=0.5$,$a=\overline y-b\overline x=36.5$,
故所求的回归直线方程为y=0.5x+36.5.
(Ⅱ)随机变量X的所有可能的取值为0,1,2.
$P({X=0})=\frac{C_2^2}{C_5^2}=\frac{1}{10}$,$P({X=1})=\frac{C_2^1C_3^1}{C_5^2}=\frac{6}{10}$,$P({X=2})=\frac{C_3^2}{C_5^2}=\frac{3}{10}$,
所以,X的分布列为:
| X | 0 | 1 | 2 |
| P | $\frac{1}{10}$ | $\frac{3}{5}$ | $\frac{3}{10}$ |
点评 本题考查回归方程,考查分布列和数学期望,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\frac{{\sqrt{2}+1}}{2}$ | C. | $\sqrt{3}+1$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com