精英家教网 > 高中数学 > 题目详情
16.在△ABC中,内角A、B、C的对边分别为a、b、c,且bsinA=$\sqrt{3}$acosB
(1)求角B的大小
(2)若b=3,sinC=2sinA,求a、c的值及△ABC的面积.

分析 (1)由正弦定理化简已知等式可得$sinBsinA=\sqrt{3}sinAcosB$,由于sinA≠0,可求tanB的值,结合范围B∈(0,π),利用特殊角的三角函数值即可求得B的值.
(2)由已知及正弦定理可得c=2a,利用余弦定理可求9=a2+c2-ac,联立即可解得a,c的值,利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(1)由$bsinA=\sqrt{3}acosB$及正弦定理得:$sinBsinA=\sqrt{3}sinAcosB$.
∵sinA≠0,
∴$sinB=\sqrt{3}cosB⇒tanB=\sqrt{3}$,
而B∈(0,π),
故$B=\frac{π}{3}$.…(6分)
(2)由sinC=2sinA及$\frac{a}{sinA}=\frac{b}{sinB}$,得c=2a,①.
又b=3,由余弦定理b2=a2+c2-2accosB,得9=a2+c2-ac,②
由①②得$a=\sqrt{3},c=2\sqrt{3}$,
∴△ABC的面积$S=\frac{1}{2}acsinB=\frac{3}{2}\sqrt{3}$.…(12分)

点评 本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示(单位:m),则该几何体的体积为15m3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=|x-2|+3的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow a=(x-1,x)$,$\overrightarrow b=(x+2,x-4)$,则“$\overrightarrow a⊥\overrightarrow b$”是“x=2”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,其右焦点为F(1,0).
(1)求椭圆E的方程;
(2)若P、Q、M、N四点都在椭圆E上,已知$\overrightarrow{PF}$与$\overrightarrow{FQ}$共线,$\overrightarrow{MF}$与$\overrightarrow{FN}$共线,且$\overrightarrow{PF}•\overrightarrow{MF}$=0,求四边形PMQN的面积的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,则“数列$\left\{{\frac{S_n}{n}}\right\}$为等差数列”是“数列{an}为等差数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.下表是某校高三一次月考5个班级的数学、物理的平均成绩:
班级12345
数学(x分)111113119125127
物理(y分)92939699100
(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)从以上5个班级中任选两个参加某项活动,设选出的两个班级中数学平均分在115分以上的个数为X,求X的分布列和数学期望.
附:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点M的坐标(x,y)满足不等式组$\left\{\begin{array}{l}{2x+y-4≥0}\\{x-y-2≥0}\\{y-3≤0}\end{array}\right.$,则x2+y2的最小值是(  )
A.$\frac{4\sqrt{5}}{5}$B.2C.$\frac{16}{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线l1;2x+y-2=0,l2:ax+4y+1=0,若l1⊥l2,则a的值为(  )
A.8B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

同步练习册答案