已知函数f(x)=axln x图象上点(e,f(e))处的切线与直线y=2x平行,g(x)=x2-tx-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[n,n+2](n>0)上的最小值;
(3)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2+xsin x+cos x.
(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数在处存在极值.
(1)求实数的值;
(2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围;
(3)当时,讨论关于的方程的实根个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=xln x,g(x)=x3+ax2-x+2.
(1)求函数f(x)的单调区间;
(2)对一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ex-kx2,x∈R.
(1)若k=,求证:当x∈(0,+∞)时,f(x)>1;
(2)若f(x)在区间(0,+∞)上单调递增,试求k的取值范围;
(3)求证:<e4(n∈N*)..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知函数f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求实数t的取值范围;
(2)证明:<ln<,其中0<a<b;
(3)设[x]表示不超过x的最大整数,证明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com