精英家教网 > 高中数学 > 题目详情
已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P、Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于点N.
(1)求证:当l与m垂直时,l必过圆心C;
(2)探索是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.
【答案】分析:(1)由直线直线m方程得,从而得到m的垂线l的斜率kl=3.利用直线方程的点斜式可得l的方程为y=3(x+1),而圆心C(0,3)适合直线l的方程,由此可得当l⊥m时,l必过圆心C.
(2)根据CM⊥MN,结合向量数量积的运算性质得.然后分l⊥x轴时和l与x轴不垂直两种情况加以讨论,分别求出向量的坐标,计算并化简可得==-5,即的值与直线l的倾斜角无关.
解答:解:(1)∵直线m方程为x+3y+6=0,∴直线m的斜率
又∵l⊥m,且,∴直线l的斜率kl=3.
故直线l的方程为y=3(x+1),即3x-y+3=0(5分)
∵圆心C坐标(0,3)满足直线l的方程,
∴当l⊥m时,l必过圆心C.(7分)
(2)∵CM⊥MN,可得
=(9分)
①当l⊥x轴时,易得,则(10分)
又∵,∴(12分)
②当l与x轴不垂直时,设直线l的方程为y=k(x+1),则
,解出,可得=(14分)

综上所述,得=-5,即与直线l的倾斜角无关.(16分)
点评:本题在坐标系中讨论直线与圆的位置关系,并求向量数量积.着重考查了平面向量数量积的运算公式、直线的基本量与基本形式和直线与圆的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1)求证:当l与m垂直时,l必过圆心C;
(2)当PQ=2
3
时,求直线l的方程;
(3)探索
AM
AN
是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P、Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于点N.
(1)求证:当l与m垂直时,l必过圆心C;
(2)探索
AM
AN
是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于点N,则下面运算结果为定值的有(  )
AP
AQ
AM
AC

AC
AN
AM
AN

查看答案和解析>>

科目:高中数学 来源:0103 月考题 题型:解答题

已知过点A(-1,0)的动直线与圆C:相交于P、Q两点,M是PQ的中点,与直线m:相交于N。
(1)当时,求直线的方程;
(2)探索是否与直线的倾斜角有关,若无关,请求出其值;若有关,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年云南省昆明一中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1)求证:当l与m垂直时,l必过圆心C;
(2)当时,求直线l的方程;
(3)探索是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.

查看答案和解析>>

同步练习册答案