精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)在点(2,f(2))处的切线为由y=2x-1,则函数g(x)=x2+f(x)在点(2,g(2))处的切线方程为
6x-y-5=0
6x-y-5=0
分析:根据函数y=f(x)在点(2,f(2))处的切线为由y=2x-1,可确定函数g(x)=x2+f(x)的切点坐标与斜率,从而可求切线方程.
解答:解:由题意,f(2)=2×2-1=3,∴g(2)=4+3=7
∵g′(x)=2x+f′(x),f′(2)=2,∴g′(2)=2×2+2=6
∴函数g(x)=x2+f(x)在点(2,g(2))处的切线方程为y-7=6(x-2)
即6x-y-5=0
故答案为:6x-y-5=0
点评:本题考查导数的几何意义,考查切线方程,确定切点坐标与斜率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案