精英家教网 > 高中数学 > 题目详情
16.已知圆x2+y2=4,过点A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程为(  )
A.(x-1)2+y2=4  (-1≤x<$\frac{1}{2}$)B.(x-1)2+y2=4 (0≤x<1)
C.(x-2)2+y2=4  (-1≤x<$\frac{1}{2}$)D.(x-2)2+y2=4 (0≤x<1)

分析 设弦BC中点(x,y),过A的直线的斜率为k,求得割线ABC的方程.再由弦的中点与圆心连线与割线ABC垂直可得垂线的方程.再根据弦的中点是这两条直线的交点,求出弦的中点的轨迹方程.

解答 解:设弦BC中点(x,y),过A的直线的斜率为k,
割线ABC的方程:y=k(x-4);
作圆的割线ABC,所以中点与圆心连线与割线ABC垂直,方程为:x+ky=0;
因为交点就是弦的中点,它在这两条直线上,故弦BC中点的轨迹方程
是:x2+y2-4x=0(已知圆内部分)
即(x-2)2+y2=4(0≤x<1)
故选:D.

点评 本题考查形式数形结合的数学思想,轨迹方程,直线与圆的方程的应用,中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2-x-3,
(1)求a的范围,使y=f(x)在[-2,2]上不具单调性;
(2)当$a=\frac{1}{2}$时,函数f(x)在闭区间[t,t+1]上的最大值记为g(t),求g(t)的函数表达式;
(3)第(2)题的函数g(t)是否有最值,若有,请求出;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{xn}为等差数列,且x1+x2+x3=5,x18+x19+x20=25,则数列{xn}的前20项的和为100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若实数x,y满足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,则z=2x-y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点A(-1,2)关于直线x+y-3=0的对称点B的坐标是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列等式一定成立的是(  )
A.a${\;}^{-\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=0B.a${\;}^{\frac{1}{2}}$÷a${\;}^{\frac{1}{3}}$=a${\;}^{\frac{5}{6}}$
C.(a32=a9D.a${\;}^{\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的方程${({\frac{3}{2}})^x}=\frac{2+3a}{5-a}$有非负根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知斜三棱柱ABC-A1B1C1中,∠BAC=$\frac{π}{2}$,∠BAA1=$\frac{2π}{3}$,∠CAA1=$\frac{π}{3}$,AB=AC=1,AA1=2,点O是B1C与BC1的交点.
(1)求AO的距离;
(2)求异面直线AO与BC所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列说法不正确的是(1)(4).
(1)命题“若x>0且y>0,则x+y>0”的否命题是真命题
(2)命题“$?{x_0}∈R,{x_0}^2-{x_0}-1<0$”的否定是“?x∈R,x2-x-1≥0”
(3)a<0时,幂函数y=xa在(0,+∞)上单调递减
(4)若$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,向量$\overrightarrow a$与向量$\overrightarrow b$的夹角为120°,则$\overrightarrow b$在向量$\overrightarrow a$上的投影为1.

查看答案和解析>>

同步练习册答案