精英家教网 > 高中数学 > 题目详情
7.已知数列{xn}为等差数列,且x1+x2+x3=5,x18+x19+x20=25,则数列{xn}的前20项的和为100.

分析 通过等差中项可知x2=$\frac{5}{3}$,x19=$\frac{25}{3}$,利用数列{xn}的前20项的和为$\frac{20({x}_{2}+{x}_{19})}{2}$,进而计算可得结论.

解答 解:∵数列{xn}为等差数列,
∴2xn+1=xn+xn+2
又∵x1+x2+x3=5,x18+x19+x20=25,
∴x2=$\frac{5}{3}$,x19=$\frac{25}{3}$,
∴x2+x19=$\frac{5}{3}$+$\frac{25}{3}$=10,
∴数列{xn}的前20项的和为$\frac{20({x}_{2}+{x}_{19})}{2}$=100,
故答案为:100.

点评 本题考查数列的前n项和,考查运算求解能力,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-4x+1,则不等式f(x)>2x2-4的解集为(  )
A.(-1,2)B.(-1,1)C.[0,1]D.(-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.使不等式|x+1|≤4成立的一个必要不充分条件是(  )
A.2≤x≤3B.-6≤x≤3C.-5≤x≤3D.-6≤x≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:关于x的方程4x2-2ax+2a+5=0最多只有一个实根,命题q:{x|x2-2x+1-m2≤0,m>0}.若非p是非q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若tanα=3,则sin2α+2cos2α=$\frac{11}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|-2<x<7 },B={x|x>1,x∈N},则A∩B的元素的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.下面的茎叶图记录了甲、乙两代表队各10名同学在一次数学竞赛中的成绩(单位:分),已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.
(1)求x,y的值,并判断甲、乙两队谁的成绩更稳定?(不需要说明理由)
(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到学生中,甲队学生成绩不低于乙队学生成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆x2+y2=4,过点A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程为(  )
A.(x-1)2+y2=4  (-1≤x<$\frac{1}{2}$)B.(x-1)2+y2=4 (0≤x<1)
C.(x-2)2+y2=4  (-1≤x<$\frac{1}{2}$)D.(x-2)2+y2=4 (0≤x<1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有四个命题
①p:f(x)=lnx-2+λ在区间(1,2)上有一个零点,q:e0.2>e0.3,p∧q为真命题
②当x>1时,f(x)=x2,g(x)=x${\;}^{\frac{1}{3}}$,h(x)=x-2的大小关系是h(x)<g(x)<f(x)
③若f′(x0)=0,则f(x)在x=x0处取得极值
④若不等式2-3x-2x2>0的解集为P,函数y=$\sqrt{x+2}$+$\sqrt{1-2x}$的定义域为Q,则“x∈P”是“x∈Q”的充分不必要条件,其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案