精英家教网 > 高中数学 > 题目详情
已知函数的图象过点和B(5,1).
①求函数f(x)的解析式;②函数f(x)的反函数;③设an=log2f(n),n是正整数,是数列的前项和Sn,解关于的不等式an≤Sn
【答案】分析:(1)函数的图象过点和B(5,1),知,由此能求出f(x).
(2)设y=f(x)=2x-5,则x-5=log2y,x=log2y+5,x,y互换,得f-1(x)=5+log2x(x>0).
(3)由an=log2f(n)=log2(2n-5)=n-5,知,由an≤Sn,解不等式n-5≤,能得到{n∈N+|n=1或n≥10}.
解答:解:(1)∵函数的图象过点和B(5,1),
,解得a=2,b=32,
∴f(x)=2x-5
(2)设y=f(x)=2x-5
则x-5=log2y,
x=log2y+5,
x,y互换,得f-1(x)=5+log2x(x>0);
(3)∵an=log2f(n)=log2(2n-5)=n-5,
∴{an}是首项为-4,公差为1的等差数列,

∵an≤Sn
∴n-5≤
解得:{n∈N+|n=1或n≥10}.
故答案为:{n∈N+|n=1或n≥10}.
点评:本题考查函数解析式的求法和数列与不等式的综合,解题时要认真审题,注意反函数的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

已知函数的图象过点B(51)

(1)求函数f(x)的解析式.

(2)n是正整数,是数列的前n项和,解关于n的不等式

(3)对于(2)中的,整数96是否为数列中的项?若是,则求出相应的项数;若不是则说明理由.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知函数的图象过点和B(5,1).

(1)求函数f(x)的解析式.

(2)记,n是正整数,是数列的前n项和,解关于n的不等式

(3)对于(2)中的,整数96是否为数列中的项?若是,则求出相应的项数;若不是则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式的图象过点数学公式和B(5,1).
①求函数f(x)的解析式;②函数f(x)的反函数;③设an=log2f(n),n是正整数,是数列的前项和Sn,解关于的不等式an≤Sn

查看答案和解析>>

科目:高中数学 来源:2014届云南省高一上学期期末考试数学试卷 题型:解答题

(本题满分10分)已知函数的图象过点.

(1)求函数的解析式;

(2)试做出简图,找出函数的零点的个数(不必计算说明);

(3)试用定义法讨论函数在其定义域上的单调性。

 

 

 

查看答案和解析>>

同步练习册答案