精英家教网 > 高中数学 > 题目详情
8.求函数f(x)=x3在区间[x0,x0+△x]的平均变化率.

分析 利用平均变化率的意义即可得出.

解答 解:$\frac{△y}{△x}$=$\frac{({x}_{0}+△x)^{3}-{x}_{0}^{3}}{△x}$=$\frac{△{x}^{3}+3△{x}^{2}{x}_{0}+3△x{x}_{0}^{2}}{△x}$=3x02+3x0△x+△x2

点评 本题考查了平均变化率的意义及其求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知角θ的始边与x轴的非负半轴重合,终边在直线y=$\frac{1}{2}$x上,则cos2θ=(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A(3,1),B(-1,2),则直线AB的斜率为(  )
A.$\frac{1}{7}$B.0C.$-\frac{1}{4}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+x-16.
(1)求满足斜率为4的曲线的切线方程;
(2)求曲线y=f(x)在点(2,-6)处的切线的方程;
(3)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=4x+2x-2的零点为x1,g(x)的零点为x2,若|x1-x2|≤$\frac{1}{4}$,则g(x)可以是(  )
A.g(x)=$\sqrt{x}$-1B.g(x)=2x-1C.$g(x)=ln({x-\frac{1}{2}})$D.g(x)=4x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.角α的终边经过点P(-3,y),且$sinα=\frac{4}{5}$,则y=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知全集U={1,2,3},A={1,m},∁UA={2},则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=logax+2(a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=bx+1-7(b>0且b≠1)的图象上,则实数b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:$\frac{sin(α+π)cos(π-α)sin(\frac{7π}{2}-α)}{tan(-α)co{s}^{3}(-α-2π)}$.

查看答案和解析>>

同步练习册答案