分析 利用两个向量的数量积的定义以及两个向量的数量积公式,求得实数m的值.
解答 解:∵向量$\overrightarrow a$=(1,$\sqrt{3}$),$\overrightarrow b$=(3,m),若向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{6}$,
则$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos$\frac{π}{6}$,即 3+$\sqrt{3}$m=2•$\sqrt{9{+m}^{2}}$•$\frac{\sqrt{3}}{2}$,求得m=$\sqrt{3}$,
故答案为:$\sqrt{3}$.
点评 本题主要考查两个向量的数量积的定义以及两个向量的数量积公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2x | B. | y=2x+$\frac{1}{x}$ | C. | y=$\sqrt{{x}^{2}-1}$ | D. | y=2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com