精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow a$=(1,$\sqrt{3}$),$\overrightarrow b$=(3,m),若向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{6}$,则实数m=$\sqrt{3}$.

分析 利用两个向量的数量积的定义以及两个向量的数量积公式,求得实数m的值.

解答 解:∵向量$\overrightarrow a$=(1,$\sqrt{3}$),$\overrightarrow b$=(3,m),若向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{6}$,
则$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos$\frac{π}{6}$,即 3+$\sqrt{3}$m=2•$\sqrt{9{+m}^{2}}$•$\frac{\sqrt{3}}{2}$,求得m=$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题主要考查两个向量的数量积的定义以及两个向量的数量积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设${\vec e_1}$,${\vec e_2}$为单位向量,且夹角为60°,若$\vec a={\vec e_1}+3{\vec e_2}$,$\vec b=2{\vec e_1}$,则$\vec a$在$\vec b$方向上的投影为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列{an}满足an=-2n+3,那么a5的值为(  )
A.-7B.-8C.-9D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知公差不为零的等差数列{an}的前n项和为Sn,S10=55,且a2、a4、a8成等比数列.
(I)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=$\frac{{S}_{n}}{n}$(n∈N*),求b1+b5+b9+…+b4n-3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数y=f(x),若对?ε>0,?x0,使得当x>x0,恒有|f(x)-x|<ε,则称函数y=f(x)具有性质P.下列具有性质P的函数是(  )
A.y=2xB.y=2x+$\frac{1}{x}$C.y=$\sqrt{{x}^{2}-1}$D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我们把满足an+an-1=k(n≥2,k是常数)的数列叫做等和数列,常数k叫做数列的公和.若等和数列{an}的首项为1,公和为3,则该数列的前2014项的和为S2014=3021..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A的坐标为(1,0),P为半圆C:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ为参数,0≤θ≤π)上的点,弧$\widehat{AP}$的长度为$\frac{π}{3}$,O为坐标原点.
(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求直线AP的极坐标方程;
(2)若M为半圆C上的动点,用半圆C的参数方程求点M到直线AP距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在区间[-1,5]上随机地取一个数x,则|x|≤1的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案