精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(I)若,求曲线在点处的切线方程;

(II)若上无极值点,求的值;

(III)当时,讨论函数的零点个数,并说明理由.

【答案】(1); (2)时函数上无零点;当时,函数上有一个零点;当时,函数上有两个零点.

【解析】

(I)由导数的几何意义,切线的斜率,先求,利用直线方程的点斜式求解. (II)因为,所以若上无极值点,则,即,解得.

(III)讨论当时,上的符号, 函数的单调性、极值情况,从而分析

函数的图像与x轴的交点个数,得出函数的零点个数.

(I)当时,

所以曲线在点处的切线方程为.

(II),依题意有,即

,解得.

(III)(1)时,函数上恒为增函数且,函数上无零点.

(2)时:

,函数为增函数;

,函数为减函数;

,函数为增函数.

由于,此时只需判定的符号:

时,函数上无零点;

时,函数上有一个零点;

时,函数上有两个零点.

综上,时函数上无零点;

时,函数上有一个零点;

时,函数上有两个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2sinxxcosxxf'x)为fx)的导数.

(1)求曲线在点A0f0))处的切线方程;

(2)设,求在区间[0π]上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增的等差数列的前项和为,若成等比数列,且.

1)求数列的通项公式及前项和

2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数满足,且, ,则函数的零点个数是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了选拔学生参加“XX市中学生知识竞赛,先在本校进行选拔测试,若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.

1)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;

2)该校推荐选拔测试成绩在110以上的学生代表学校参加市知识竞赛,为了了解情况,在该校推荐参加市知识竞赛的学生中随机抽取2人,求选取的两人的选拔成绩在频率分布直方图中处于不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求的取值范围;

(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数.

(1)当时,求函数的图象在点处的切线方程;

(2)若函数有两个不同的零点

①当时,求的最小值;

②当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有人玩掷均匀硬币走跳棋的游戏,棋盘上标有第0站(出发地),在第1站,第2站,……,第100. 一枚棋子开始在出发地,棋手每掷一次硬币,这枚棋子向前跳动一次,若掷出正向,棋子向前跳一站,若掷出反面,棋子向前跳两站,直到棋子跳到第99站(失败收容地)或跳到第100站(胜利大本营),该游戏结束. 设棋子跳到第站的概率为.

1)求

2)写出的递推关系);

3)求玩该游戏获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P是圆上的动点,P点在x轴上的射影是D,点M满足

1)求动点M的轨迹C的方程,并说明轨迹是什么图形;

2)过点的直线l与动点M的轨迹C交于不同的两点AB,求以OAOB为邻边的平行四边形OAEB的顶点E的轨迹方程.

查看答案和解析>>

同步练习册答案