精英家教网 > 高中数学 > 题目详情
3.已知B,C是球O的一个小圆O1上的两点,且BC=2$\sqrt{3}$,∠BOC=$\frac{π}{2}$,∠BO1C=$\frac{2π}{3}$,则三棱锥O-O1BC的体积为$\frac{\sqrt{6}}{3}$.

分析 由题意,OO1⊥平面O1BC,求出球O,小圆O1的半径,即可求出三棱锥O-O1BC的体积.

解答 解:由题意,OO1⊥平面O1BC.
因为BC=2$\sqrt{3}$,∠BOC=$\frac{π}{2}$,∠BO1C=$\frac{2π}{3}$,
所以OB=$\sqrt{6}$,O1C=2,
所以OO1=$\sqrt{2}$,
所以三棱锥O-O1BC的体积为$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{2}$×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{6}}{3}$.
故答案为:$\frac{\sqrt{6}}{3}$.

点评 本题考查三棱锥O-O1BC的体积,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{(2x-{x}^{2}){e}^{x},x≤0}\\{-{x}^{2}+4x+3,x>0}\end{array}\right.$,g(x)=f(x)-3k,若函数g(x)恰有两个不同的零点,则实数k的取值范围为(1,$\frac{7}{3}$)∪{0,$-\frac{2\sqrt{2}+2}{3{e}^{\sqrt{2}}}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x>0,y>0,A=$\frac{x+y}{1+x+y}$,B=$\frac{x}{1+x}+\frac{y}{1+y}$,则A与B的大小关系为(  )
A.A>BB.A≥BC.A<BD.A≤B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.过抛物线y2=2x焦点的直线与抛物线交于A,B两点,且|AB|=5
(1)求线段AB中点的横坐标;
(2)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图△ABC内接于圆O,AB=AC,直线MN切圆O于点C,弦BD∥MN,AC与BD相交于点E.
(Ⅰ)求证:△ABE≌△ACD;
(Ⅱ)若AB=6,BC=4,求$\frac{DE}{AE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,一个正方形OABC在斜二测画法下的直观图是个一条边长为1的平行四边形,则正方形OABC的面积为(  )
A.1B.4C.1或4D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.把正奇数数列{2n-1}中的数按上小下大、左小右大的原则排成如图的三角形数表:
设amn(m,n∈N*)是位于这个三角形数表中从上往下数第m行、从左往右数第n个数.
(1)求a73
(2)若amn=2011,求m,n的值;
(3)已知函数$f(x)=\frac{{\root{3}{x}}}{2^n}(x>0)$,若记三角形数表中从上往下数第n行各数的和为bn,求数列{f(bn)}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在电脑游戏中,“主角”的生命机会往往被预先设定.如某枪战游戏,“主角”被设置生命6次,每次生命承受射击8次(即被击中8次就失去一次生命机会),假设射击为单发射击,如图是为“主角”耗用生命机会的过程设计的一个程序框图,请问判断框内应该填(  )
A.i<6B.i<8C.i>48D.i<48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆x2+y2=8内有一点M(-1,2),AB为经过点M且倾斜角为α的弦.
(1)当弦AB被点M平分时,求直线AB的方程;
(2)当α=$\frac{3π}{4}$时,求弦AB的长.

查看答案和解析>>

同步练习册答案