精英家教网 > 高中数学 > 题目详情
9.设a,b是两条不同的直线,α是一个平面,则下列命题正确的是(  )
A.若a∥α,b?α,则a∥bB.若a∥b,a⊥α,则b⊥αC.若a∥b,a∥α,则b∥αD.若a⊥b,a⊥α,则b∥α

分析 在A中,a与b平行或异面;在B中,由线面垂直的判定定理得b⊥α;在C中,b与α相交、平行或b?α;在D中,b∥α或b?α.

解答 解:由a,b是两条不同的直线,α是一个平面,知:
在A中,若a∥α,b?α,则a与b平行或异面,故A错误;
在B中,若a∥b,a⊥α,则由线面垂直的判定定理得b⊥α,故B正确;
在C中,若a∥b,a∥α,则b与α相交、平行或b?α,故C错误;
在D中,若a⊥b,a⊥α,则b∥α或b?α,故D错误.
故选:B.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.给出下列判断,其中正确的是(  )
A.三点唯一确定一个平面
B.一条直线和一个点唯一确定一个平面
C.两条平行线与同一条直线相交,三条直线在同一平面内
D.空间两两相交的三条直线在同一平面内

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴两端点为B1(0,-1)、B2(0,1),离心率e=$\frac{\sqrt{3}}{2}$,点P是椭圆C上不在坐标轴上的任意一点,直线B1P和B2P分别与x轴相交于M,N两点,
(Ⅰ)求椭圆C的方程和|OM|•|ON|的值;
(Ⅱ)若点M坐标为(1,0),过M点的直线l与椭圆C相交于A,B两点,试求△ABN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{{\begin{array}{l}{ax+1-4a,}&{x<1}\\{{x^2}-3ax,}&{x≥1}\end{array}}\right.$,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则实数a的取值范围是($\frac{2}{3}$,+∞)∪(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,6},那么(∁UA)∩B等于(  )
A.{2,4,6}B.{4,6}C.{3,4,6}D.{2,3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)计算:$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{({-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}}})({-\frac{5}{6}{x^{\frac{1}{2}}}{y^{-\frac{1}{6}}}})}}$;
(2)已知log53=a,log52=b,用a,b表示log2512.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=3cos(ωx-$\frac{π}{4}$)(1<ω<14)的图象关于x=$\frac{π}{12}$对称,则ω等于(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sinωx(ω>0)的图象中相邻两条对称轴之间的距离为2π,将f(x)的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,g(x)在[0,$\frac{π}{2}$]上的最大值为1.
(1)求函数g(x)的解析式;
(2)在△ABC中,内角A、B、C的对边分别为a、b、c,若C是函数g(x)的最小正零点,且c=4,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的实轴长等于8,虚轴长等于6,离心率是$\frac{5}{4}$,焦点坐标是(±5,0).

查看答案和解析>>

同步练习册答案