精英家教网 > 高中数学 > 题目详情

已知,求下列各式的值:
(Ⅰ)
(Ⅱ).

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)先由已知式,解出的值,再把欲求式的分子分母都除以(需说明),变形为,代入的值,即可求得的值;(Ⅱ)先利用诱导公式将欲求式化为:,将这个式子变形为,分子分母都除以,变形为,代入的值,即可求得的值.
试题解析:由已知得tanα=.                       3分
(1)原式==-.          8分
(2)原式=sin2α+sinαcosα+2=sin2α+sinαcosα+2(cos2α+sin2α)

.                 13分.
考点:三角函数給值求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(1)求的最小值及取最小值时的集合;
(2)求时的值域;
(3)求时的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的最大值为6.
(Ⅰ)求
(Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(Ⅰ)若,求的值;
(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数
(1)若,f(x)=,求的值;
(2)在△ABC中,角A,B,C的对边分别是,且满足,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.
(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;
(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数;
(3)求该商店月利润的最大值.(定义运算

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图像如图所示.

(1)求函数的解析式;
(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,计算:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,
(Ⅰ)求的值;
(Ⅱ)若,求的面积.

查看答案和解析>>

同步练习册答案