精英家教网 > 高中数学 > 题目详情
不等式
x+1
x
≤0的解集是
 
考点:其他不等式的解法
专题:不等式的解法及应用
分析:不等式即
x≠0
x(x+1)≤0
,由此解得不等式的解集.
解答: 解:不等式
x+1
x
≤0,即
x≠0
x(x+1)≤0

解得-1≤x<0,即不等式的解集为[-1,0),
故答案为:[-1,0).
点评:本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{bn}满足b1=1,且bn=2bn-1+3,
(Ⅰ)证明数列{bn+3}是等比数列并求数列{bn}的通项公式;
(Ⅱ)设数列{an}是首项a1=1,公差d=2的等差数列,若cn=
an
bn+3
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数y=f(x)在[0,7]上只有l和3两个零点,且y=f(2-x)与y=f (7+x)都是偶函数,则函数y=f(x)在[0,2013]上的零点个数为(  )
A、402B、403
C、404D、405

查看答案和解析>>

科目:高中数学 来源: 题型:

在每年的“春运”期间,某火车站经统计每天的候车人数y(万人)与时间t(小时),近似满足函数关系式y=6sin(ωt+φ)+10,ω>0,|φ|<π,t∈[0,24],并且一天中候车人数最少是夜晚2点钟,最多是在下午14点钟.
(1)求函数关系式?
(2)当候车人数达到13万人以上时,车站将进入紧急状态,需要增加工作人员应对.问在一天中的什么时间段内,车站将进入紧急状态?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=1,点P(x0,y0)是直线l:3x+2y-4=0上的动点,若在圆C上总存在不同的两点A,B使得
OA
+
OB
=
OP
,则x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n=1,2,3,…2012),圆C1:x2+y2-4x-4y=0,圆C2:x2+y2-2anx-2a2013-ny=0,若圆C2平分圆C1的周长,则{an}的所有项的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,当x<0时,f′(x)>0,且f(-1)=0,则不等式f(x)<0的解集为 (  )
A、{x|x<-1}
B、{x|0<x<1}
C、{x|x<-1或0<x<1}
D、{x|x≥1或-1<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,如图,AB是圆柱的母线,BC是圆柱底面圆的直径,D是圆柱底面圆上与B、C不重合的点,用<MN,EF>表示直线MN、EF的夹角.
(Ⅰ)在三棱锥A-BCD中,写出所有两棱的夹角(不写出具体的角度值);
(Ⅱ)在三棱锥A-BCD中的六条棱中取两条棱,求这两条棱互相垂直的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中依次摸出两个球,求两球颜色不同的概率;
(2)采取不放回抽样方式,从中依次摸出两个球,记ξ为摸出两球中白球的个数,求ξ的期望.

查看答案和解析>>

同步练习册答案