精英家教网 > 高中数学 > 题目详情

根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示.

假设每名队员每次射击相互独立.
(Ⅰ)求上图中的值;
(Ⅱ)队员甲进行三次射击,求击中目标靶的环数不低于8环的次数的分布列及数学期望(频率当作概率使用);
(Ⅲ)由上图判断,在甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)

(Ⅰ);(Ⅱ);(Ⅲ)甲队员的射击成绩更稳定

解析试题分析:(Ⅰ)由频率和为1可求的值。(Ⅱ)从图中可以得到击中目标靶的环数不低于8环的概率,队员甲进行三次射击属于独立重复事件,符合二项分布。可根据独立重复事件概率公式求其概率,再根据数学期望公式求其期望值,也可用二项分布列的数学期望公式求其期望值。(Ⅲ)甲队员的射击成绩较集中、波动较小,相对稳定。
试题解析:解:(Ⅰ)由上图可得,
所以.                                                 3分
(Ⅱ)由图可得队员甲击中目标靶的环数不低于8环的概率为
                                      4分
由题意可知随机变量的取值为:0,1,2,3.                        5分
事件“”的含义是在3次射击中,恰有k次击中目标靶的环数不低于8环.
                   8分
的分布列为

所以的期望是.       10分
(Ⅲ)甲队员的射击成绩更稳定.                               13分
考点:二项分布列、数学期望及方差的意义,考查数据处理能力、运算能力。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位:辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A类轿车有10辆.

 
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
(1)求z的值;
(2)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个分数.记这8辆轿车的得分的平均数为,定义事件{,且函数没有零点},求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市准备从7名报名者(其中男4人,女3人)中选3人到三个局任副局长.
(1)设所选3人中女副局长人数为X,求X的分布列和数学期望;
(2)若选派三个副局长依次到A、B、C三个局上任,求A局是男副局长的情况下,B局为女副局长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A类轿车有10辆

 
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
 
(1)求下表中z的值;
(2)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:94,86,92,96,87,93,90,82把这8辆轿车的得分看作一个总体,从中任取一个得分数 记这8辆轿车的得分的平均数为,定义事件{,且函数没有零点},求事件发生的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为随机变量,从棱长为1的正方体ABCD-A1B1C1D1的八个顶点中任取四个点,当四点共面时,=0,当四点不共面时,的值为四点组成的四面体的体积.
(1)求概率P(=0);
(2)求的分布列,并求其数学期望E ().

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个盒子中装有形状大小相同的5张卡片,上面分别标有数字1,2,3,4,5,甲乙两人分别从盒子中随机不放回的各抽取一张.
(Ⅰ)写出所有可能的结果,并求出甲乙所抽卡片上的数字之和为偶数的概率;
(Ⅱ)以盒子中剩下的三张卡片上的数字作为边长来构造三角形,求出能构成三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

长沙市某中学在每年的11月份都会举行“社团文化节”,开幕式当天组织举行大型的文艺表演,同时邀请36名不同社团的社长进行才艺展示.其中有的社长是高中学生,的社长是初中学生,高中社长中有是高一学生,初中社长中有是初二学生.
(1)若校园电视台记者随机采访3位社长,求恰有1人是高一学生且至少有1人是初中学生的概率;
(2)若校园电视台记者随机采访3位初中学生社长,设初二学生人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(I)求张同学至少取到1道乙类题的概率;
(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对某校高一年级学生参加社区服务次数统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:

(1)求出表中的值;
(2)在所取样本中,从参加社区服务的次数不少于次的学生中任选人,求至少一人参加社区服务次数在区间内的概率.

查看答案和解析>>

同步练习册答案