精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的首项及公差均为正数,令bn=
an
+
a2012-n
(n∈N*,n<2012)
.当bk是数列{bn}的最大项时,k=______.
an
=x
a2012-n
=y

bn=
an
+
a2012-n
(n∈N*,n<2012)

∴根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),
得bn2=(
an
+
a2012-n
2≤2(an+a2012-n)=2(2a1006)=4a1006
当且仅当an=a2012-n时,bn取到最大值,
此时n=1006,所以k=1006.
故答案为:1006.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案