精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
13
x3-x2-3x
在x1,x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)).
(1)求x1,x2的值;
(2)证明:线段MN与曲线f(x)存在异于M、N的公共点.
分析:(1)根据函数f(x)=
1
3
x3-x2-3x
在x1,x2(x1<x2)处取得极值,说明f′(x)=0的两个根为x1,x2,解方程求出x1,x2的值;
(2)根据两点公式,求出直线MN的方程,与曲线f(x)进行联立方程,根据零点定理进行证明,也可以解出交点;
解答:解:解法一:∵函数f(x)=
1
3
x3-x2-3x
在x1,x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)),
f'(x)=x2-2x-3,
的两个根为x1,x2
由f'(x)=x2-2x-3=0,得x1=-1,x2=3(3分)
令f'(x)>0,x>3或x<-1,f(x)的单调增区间为(-∞,-1)和(3,+∞),f'(x)<0,-1<x<3,单调减区间为(-1,3)(5分)
所以函数f(x)在x1=-1.x2=3处取得极值.
(2)由(1)可知,M(-1,
5
3
).N(3,-9)
(7分)
所以直线MN的方程为y=-
8
3
x-1
(8分)
y=
1
3
x3-x2-3x
y=-
8
3
x-1
得x3-3x2-x+3=0,(9分)
令F(x)=x3-3x2-x+3,易得F(0)=3>0,F(2)=-3<0,(11分)
而F(x)的图象在(0,2)内是一条连续不断的曲线,故F(x)在(0,2)内存在零点x0,这表明线段MN与曲线f(x)有异于M,N的公共点.(12分)
解法二:同解法一,可得直线MN的方程为y=-
8
3
x-1
 (8分)
y=
1
3
x3-x2-3x
y=-
8
3
x-1
得x3-3x2-x+3=0(9分)
解得x1=-1,x2=1.x3=3,
x1=-1
y1=
5
3
x2=1
y2=-
11
3
x3=3
y3=-9
(11分)
所以线段MN与曲线f(x)有异于M,N的公共点(1,-
11
3
)
.  (12分)
点评:此题主要考查利用导数研究函数的单调性,第二问有两种方法,显然第一种比较实用,高次方程必须经过变形才能进行求解,一般的话3次方程学生不会求解,还是用导数研究函数的图象判断与x轴的交点问题,会比较简单;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案